APP下载

快递箱的秘密

2022-06-19阮征

数学大王·中高年级 2022年6期
关键词:特制包装纸正方体

阮征

啦啦啦,啦啦啦,我是播报的小行家,一边走一边报。今天的热点真正好,快来组队看报道。

你喜欢网购吗?只需点击手机屏幕,快递员们就能从千里之外,将你心仪的物品送到你的手中。对图形比较敏感的同学可能会发现,快递箱大多很“眼熟”,它们不是正方体形状的,就是长方体形状的。

下面我们就一起来看看快递箱中的数学秘密吧!

最节约的包装法

在给长方体物品包装时,你知道怎样包装才能做到最节约包装纸吗?以两个长、宽、高分别为12 cm,6 cm和3 cm的长方体为例。

(1)当两个长方体的上下面重叠时,这样的包装方式可以节约6×12×2=144(cm2)的包装纸。

(2)当两个长方体的前后面重叠时,这样的包装方式可以节约3×12×2=72(cm2)的包装纸。

(3)当两个长方体的左右面重叠时,这样的包装方式可以节约3×6×2=36(cm2)的包装纸。

选择合适的包装方式,商家就可以减少包装纸的用量,大大节约成本。但这还不能解决快递箱的“眼熟”之谜。

对于长方体和正方体来说,它们都有自己的表面积和体积计算公式。

我们依旧以长、宽、高分别为12 cm,6 cm和3 cm的长方体为例,其体积为3×6×12=216(cm3),表面积为144+72+36=252(cm2)。体积相同的正方体边长为6 cm,表面积为6×6×6=216(cm2)。

这时,就有小读者要舉手说了:“我知道,我知道。长方体的体积一定时,长方体的长、宽、高越接近,表面积越小。体积相同的情况下,正方体表面积小于长方体表面积。所以,我们只要选择正方体快递箱,就能减少快递箱的纸板用量,降低成本。”

实际上,我们看到的快递箱大多是长方体形状的,这又是为什么呢?

特制快递箱

其实,现在很多快递箱并不是只有六个面。为了更好地将物品密封,快递箱都会增加一些扩展面,在快递箱的左右两面再增加一层。

以有四个扩展面的快递箱为例,其相当于增加了两个最小的底面。以长、宽、高分别为 12 cm,6 cm和 3 cm的长方体快递箱为例,扩展后的快递箱纸板面积为252+36=288(cm2);以边长为6 cm的正方体快递箱为例,扩展后的快递箱纸板面积为6×6×8=288(cm2)。

因此,当长方体快递箱的长、宽、高成2倍关系时,其需要的纸板面积和同体积的正方体快递箱是一样的。

如果统一选择正方体快递箱,会降低快递箱的空间利用率,导致货物底部不能固定在快递箱中,在运输过程中容易被摔碎,难以保证货物的完好性。所以商家大都采用特制的长方体快递箱,这样既能节省成本又能保护货物,一举两得。

这些特制的长方体快递箱大多是“亲戚”,它们在外形上非常相似,这也是许多小读者觉得它们“眼熟”的原因。A372DB7D-5E8D-4FE2-B36F-7AA81FC73141

猜你喜欢

特制包装纸正方体
给正方体涂色
站立的迷你小怪物
多少个小正方体
浮不起来的球
数小正方体
带童锁安全刀架
食品包装纸中铅测定结果的不确定度评定
拼正方体
大嘴小怪鱼
特制鱼钩