APP下载

借“搬移”巧添线 构全等变“通途”

2022-06-10黄萍

初中生世界·八年级 2022年9期
关键词:通途辅助线中点

黄萍

从全等三角形开始,几何越发充满智慧,有时一条辅助线能使“天堑”变“通途”。平移、旋转、翻折等变换只改变图形的位置,不改变形状与大小,变换前后图形全等。若把这几种变换(组合)称为“搬移”,我们可以通过“搬移”巧添輔助线,构造全等三角形,从而解决问题。

例 如图1,E是BC的中点,点A在DE上,且∠BAE=∠D,求证:AB=CD。

方法1 依托已知等边“搬移”三角形

【分析】如图2,延长AE到F,使EF=AE,连接CF,则△ABE≌△FCE,所以CF=BA,∠F=∠1=∠D,所以CD=CF=AB。

【点评】构造全等三角形是解决本题的关键。本题思路是利用倍长过中点的线段,构造“八字形”全等。

方法2 指向待证等边“搬移”三角形

【分析】如图3,在DE上取点F,使CF=BE,因为BE=CE,得CF=CE,则∠CFE=∠CEF,所以∠DFC=∠AEB。再根据∠1=∠D,证得△ABE≌△DCF,则AB=CD。

【点评】若待证的结论一定“真”,则由它也能打开思路。运用目标启发思考也要学会哦。

研究图形的基本视角是“边”和“角”,我们前面利用相等的边构造全等三角形,下面再看看相等的角。

方法3 由等角出发“搬移”三角形

【分析】基于∠1=∠D 这一条件,我们不妨“搬移”△CDE。如图4,使∠D与∠1重合,可这样叙述辅助线:在DE的延长线上取点F,使BF=BE。余下的小读者自己完成哦!(方法2也可以认为是从“角”的角度考虑。)

从相等的边和相等的角这两个视角出发,还有其他搬移方法,同学们试试看吧!

初学全等,我们不妨借力“搬移”来投石问路,通过观察,思考如何合理添加辅助线,构造全等三角形。当你和各种图形“相处熟悉”了,解题自然就水到渠成啦!

(作者单位:江苏省启东市东安中学)

猜你喜欢

通途辅助线中点
怎样添辅助线证全等
茅尾海上筑通途
天堑通途
例谈圆锥曲线中的中点和对称问题
两种重要的辅助线
浅谈辅助线在数控切割中的应用
通途
中点的联想
准PR控制的三电平逆变器及中点平衡策略
带续流开关的中点箝位型非隔离光伏逆变器