磁性亲水亲脂平衡萃取材料辅助基质固相分散萃取-高效液相色谱-串联质谱法同时测定中药材中76种农药残留
2022-04-01魏丹,国明
魏 丹, 国 明
(1.河北经贸大学生物科学与工程学院,河北 石家庄 050061;2.浙江省化工产品质量检验站有限公司,浙江 杭州 310023)
中草药主要来源于天然药及其加工品,其中以植物药居多,是中华文化的传统用药,至今在我国预防治疗、养生与保健中发挥着不可替代的作用[1]。随着中草药市场规模的不断扩大,其生产量与消费量不断增加[2,3],大部分野生药材资源已无法满足药用需求,栽培药材已成为目前中药材市场的主流药品。在中药材的栽培过程中不可避免地会发生病虫草害,需要使用农药进行防治,然而农药的频繁使用和滥用会导致中药材中农药残留超标,直接影响我国中药材的质量与安全[4,5]。
为了有效控制中药种植中违规使用高安全风险、高残留、高毒农药,从源头把控中草药质量和安全,保障人民用药安全,我国不断改善中草药中农药残留标准。2020年版《中国药典》全面制定植物类中药材和饮片禁用农药的限量标准,不仅有效保障了人民用药的安全性,同时引导中药材种植过程中农药的合理使用,有效控制了大量使用禁用农药和滥用农药等行业共性问题,有助于推进中医药国际化[6]。建立可操作性强、准确度高、灵敏度高的中药材中多种农药残留同时筛查和检测的方法显得越来越重要。目前,色谱-质谱联用技术具有高灵敏度、专属性强、高通量检测等优点,能够满足当前快速、准确、高效的检测要求,已广泛用于农药多残留的检测中[7-9]。中药基质复杂,含有有机酸、糖分、色素等基质干扰物质,需要有效的样品前处理方法实现对样品的萃取富集。目前,应用于农药残留的前处理方法有固相萃取[10,11]、液液萃取[12,13]和磁性固相萃取[14]等。这些方法通常适用于液体样品。对于固体或粉末状中药材样品,需要使用一定量的有机溶剂预提取后再进行净化或吸附萃取。
基质固相分散萃取(MSPD)通过将样品和萃取材料混匀后研磨分散,可以均质并将待测目标物很好地分散至萃取材料表面,以达到良好的分散萃取效果,具有样品使用量少、有机试剂消耗少等优点,适用于固体样品前处理[15]。目前,QuEChERS常用于中药材中农药多残留的样品前处理中[16,17]。但是,QuEChERS步骤通常包括提取、盐析和离心等,而传统的基质固相分散萃取通常需要采用固相萃取柱进行装柱,操作较为繁琐。同时大多数的吸附剂无法满足农药多残留同时萃取的要求。因此,本实验通过制备具有广谱吸附特性的磁性亲水亲脂平衡萃取材料(Fe3O4@PLS),可以同时萃取非极性农药和极性农药(logP<4.5)[18],将其与粉末状中药材样品一起研磨,在外部磁场的作用下,利用磁性基质固相分散萃取法(MMSPD),实现了中药材中多种类农药的分离和萃取,然后与高效液相色谱-串联质谱法联用,建立了同时测定中药材中76种农药残留的分析方法。
1 实验部分
1.1 仪器、试剂与材料
Agilent 1290 infinity高效液相色谱-6460 TripleQuad质谱仪、ZORBAX EclipsePlus C18色谱柱(100 mm×3.0 mm,1.8 μm)(美国Agilent公司);Milli-Q超纯水器(美国Millipore公司);傅里叶变换红外光谱分析仪(FT-IR)(德国Bruker公司);Gemini SEM 500型场发射扫描电子显微镜(SEM)(德国Carl Zeiss公司);D8 Advance型X射线粉末衍射(XRD)(德国Bruker公司)。
甲醇、乙腈为色谱纯,其他试剂均为分析纯;三氯化铁(FeCl3·6H2O)、正硅酸乙酯(TEOS)、二乙烯基苯(DVB)、N-乙烯基吡咯烷酮(NVP)、偶氮二异丁腈(AIBN)、甲基丙烯酸3-(三甲氧基硅基)丙酯(MPS),以及76种农药标准品(10 mg/L)均购自上海安谱实验科技股份有限公司。76种农药标准品(10 mg/L)于-20 ℃冰箱内避光保存,使用前将混合标准储备液恢复至室温,并用甲醇稀释至所需浓度,于4 ℃冰箱内避光保存。中药材样品金银花、菊花、三七块根(干)来源于杭州当地中药材市场、药房。
1.2 磁性吸附剂的制备
1.2.1Fe3O4纳米颗粒
采用溶剂热法制备[19],准确称取1.950 0 g FeCl3·6H2O分散于22.5 mL乙二醇中,搅拌均匀,加入2.600 0 g醋酸钠,搅拌均匀后通入氮气30 min,隔绝空气转移至50 mL反应釜中,于185 ℃条件下反应12 h,静置冷却至室温,使用磁铁从反应溶液中分离得到黑色沉淀,用水、乙醇交替冲洗至近中性,真空烘箱干燥,得到Fe3O4纳米颗粒。
1.2.2Fe3O4@SiO2@MPS
参考文献[20]方法,称取1.0 g Fe3O4,置于500 mL三口烧瓶中,加入300.0 mL水,超声分散均匀,加入100 mL乙醇超声分散均匀后,加入1.2 mL纯氨水溶液,涡旋振荡均匀。然后通入氮气,在氮气保护下依次逐滴滴加2.5 mL TEOS和5.5 mL乙醇至上述溶液中,于60 ℃条件下反应12 h,冷却至室温后,利用磁性分离得到黑色沉淀,依次用丙酮和乙醇洗去未反应的TEOS,于50 ℃真空干燥,得到Fe3O4@SiO2纳米颗粒。
称取0.2 g Fe3O4@SiO2,置于500 mL三口烧瓶中,加入30 mL乙醇,超声分散均匀后,用移液枪逐滴滴加3 mL MPS,于25 ℃搅拌24 h,反应完成后,利用磁性分离得到黑色沉淀,用乙醇洗去未反应的MPS,于50 ℃真空干燥,得到Fe3O4@SiO2@MPS。
1.2.3Fe3O4@PLS磁性材料
称取3.0 g Fe3O4@SiO2@MPS,置于1 000 mL三口烧瓶中,加入500.0 mL乙腈,超声10 min,依次加入6.3 mL DVB、7.5 mL NVP和0.180 0 g AIBN,超声分散均匀,将烧瓶中的溶液转移至蒸馏装置中,收集乙腈层,于75 ℃预聚合反应20 min,于115 ℃聚合反应1 h。反应完成后静置冷却至室温,加入收集得到的乙腈溶液(约150.0~200.0 mL),超声分散,然后在外加磁场作用下收集沉淀物,依次用乙腈和乙醇清洗,于50 ℃真空干燥后得到核壳结构的Fe3O4@PLS。
1.3 中药材样品前处理
研磨分散吸附:取50 g中药材,充分粉碎,过3号筛(50目)后,放入聚乙烯袋中备用。准确称取10 mg已粉碎的中药材样品,置于研钵中,加入10 mg磁性吸附剂Fe3O4@PLS,研磨分散吸附5 min。
淋洗:将研磨均匀的混合物转移至25 mL烧杯中,加入10 mL 20%(v/v)甲醇水溶液,涡旋振荡1 min,利用磁铁磁性分离淋洗液和混合物,收集混合物,弃去淋洗液。
洗脱:在上述收集后的混合物中加入0.5 mL 0.1%(v/v)甲酸乙腈,涡旋振荡1 min进行洗脱,待洗脱完全后,使用磁铁磁性分离,收集洗脱液,经0.22 μm微孔滤膜过滤后进行HPLC-MS/MS定量分析。
1.4 HPLC-MS/MS条件
色谱分离采用ZORBAX Eclipse Plus C18色谱柱(100 mm×3.0 mm,1.8 μm);柱温:40 ℃;流速:0.2 mL/min;流动相:0.05% (v/v)甲酸水溶液(A)和乙腈(B)。梯度洗脱程序:0~4 min,90%A~50%A;4~15 min,50%A~40%A;15~18 min,40%A~20%A;18~19 min,20%A~90%A;19~25 min,90%A。进样量:10 μL。
离子源为电喷雾电离(ESI)源,采用正离子检测模式;多反应监测(MRM)模式进行定量分析。干燥气温度为300 ℃,干燥气流速为5 L/min;雾化气压力为0.3 MPa;鞘气温度:250 ℃,鞘气流速:10 L/min;毛细管电压为4 000 V。76种农药的其他质谱参数见表1。
表1 76种农药的质谱参数Table 1 MS parameters for the 76 pesticides
表1 (续)Table 1 (Continued)
2 结果与讨论
2.1 磁性萃取材料的表征
Fe3O4@PLS和Fe3O4纳米颗粒的粒径大小和表面形态如图1a所示,Fe3O4纳米颗粒表面较为光滑,呈规则的球形,颗粒形状大小较为均匀,粒径约为50 nm。通过硅烷化、双键以及有机共聚物修饰后得到的Fe3O4@PLS粒径约为500~600 nm,呈较规则的球形,粒径远大于Fe3O4纳米颗粒,且其表面有大量褶皱,增大了比表面积,提高了对目标物的吸附效率。如图1b所示,30.12°、35.47°、43.11°、53.49°、57.06°和62.62°的2θ值的特征峰对应于Fe3O4的(222)、(331)、(400)和(422)、(511)和(440),PLS无定形结构的特征尖峰、Fe3O4@PLS的特征峰与Fe3O4特征峰一致。
此外采用傅里叶变换红外光谱(FT-IR)对Fe3O4@PLS进行表征,如图1c所示,560 cm-1处为Fe3O4中Fe-O-Fe的伸缩振动特征峰,1 068 cm-1处为Si-O-Si基团的面内伸缩振动的特征吸收峰,1 636 cm-1、3 436 cm-1处分别为Si-OH的弯曲振动峰和伸缩振动峰,说明Fe3O4表面形成SiO2涂层,而得到Fe3O4@SiO2,在1 500~1 600 cm-1处为DVB中芳环的C=C弯曲振动特征吸收峰,1 250~1 300 cm-1和1 400~1 500 cm-1处分别为NVP中C-C伸缩振动特征峰和C-N伸缩振动特征峰[21],综上所述,表明DVB和NVP单体成功负载于Fe3O4表面。
图1 Fe3O4@PLS和Fe3O4的表征结果Fig.1 Characterization results for Fe3O4@PLS and Fe3O4a.SEM micrographs;b.X-rays diffraction patterns;c.Fourier transform-infrared spectra.PLS:macroporous copolymer of divinyl benzene (DVB)and N-vinyl pyrrolidone (NVP).
2.2 MMSPD萃取条件的优化
2.2.1磁性萃取剂用量
磁性萃取剂用量是影响萃取效率的重要因素之一。实验考察了Fe3O4@PLS的用量(5、10、12、15、20 mg)对76种农药萃取回收率的影响。如图2a所示,Fe3O4@PLS用量为5~10 mg时,多数目标物的回收率随着磁性吸附剂用量的增加而增加,当Fe3O4@PLS用量为10 mg时,75种农药萃取回收率≥70%,其中,62种农药的萃取回收率为80%~120%,继续增加Fe3O4@PLS用量,回收率<70%的目标物个数呈增加趋势。因此选择Fe3O4@PLS的用量为10 mg。
图2 不同萃取条件对76种农药回收率的影响Fig.2 Effect of different extraction parameters on the recoveries of the 76 pesticides a.amount of magnetic material;b.grinding adsorption time;c.volume fraction of methanol in rinsing agent;d.type of eluent solvent;e.volume of eluent solvent;f.elution time. ME:methanol;ME-0.1% FA:methanol containing 0.1% formic acid;ACN:acetonitrile;ACN-0.1% FA:acetonitrile containing 0.1% formic acid.
2.2.2研磨分散吸附时间
磁性吸附剂在样品中的分散程度是影响MMSPD萃取回收率的关键因素之一,充足的研磨分散时间可以使样品基质中的目标物充分吸附于磁性吸附剂表面,进而提高萃取回收率。实验对比了不同研磨分散时间(2、3、4、5、6 min)的萃取回收率。如图2b所示,当研磨时间从2 min增加至5 min时,回收率≥70%的目标物个数明显增加,研磨时间为5 min时,76种农药萃取回收率≥70%,继续增加研磨分散时间,回收率≥70%和回收率在80%~100%的目标物个数变化均不显著。因此最终确定研磨分散时间为5 min。
2.2.3淋洗液中甲醇的体积分数
磁性萃取剂和样品混合物研磨分散后使用甲醇水溶液作为淋洗液。甲醇水溶液通常可以作为金银花、菊花和三七有效成分的提取剂[22-24],适当增加淋洗液中甲醇的体积分数有利于去除金银花、菊花和三七中的基质干扰,同时淋洗液中甲醇的体积分数也会影响磁性萃取剂对目标物的萃取效率。实验对比了甲醇以及体积分数为5%、10%、20%、25%的甲醇水溶液对76种农药回收率的影响。如图2c所示,当甲醇体积分数<20%时,约73~75种目标物萃取回收率大于70%,继续增加有机相的体积分数,回收率<70%的目标物个数明显增加。因此,为了获得更好的回收率且能去除更多的杂质,选择20%甲醇水溶液作为淋洗液。
2.2.4洗脱剂种类
采用涡旋振荡对目标物进行洗脱,以甲醇、0.1%甲酸甲醇、乙腈、0.1%甲酸乙腈作为洗脱剂进行考察。以乙腈作为洗脱剂时,3种样品的洗脱液较为澄清,说明有机杂质共萃取物较少。如图2d所示,使用乙腈、甲醇作为洗脱剂时,萃取回收率为80%~120%的目标物个数分别为43和40,说明乙腈的萃取回收率相对优于甲醇。乙腈中加入0.1%甲酸后,76种农药的萃取回收率均≥70%,其中,64种农药的萃取回收率达到80%~120%。因此最终选择0.1%甲酸乙腈溶液作为洗脱剂。
2.2.5洗脱剂体积
实验对比了洗脱剂体积分别为0.5、1、2、2.5和5 mL时76种农药的萃取回收率。如图2e所示,洗脱剂体积为0.5 mL时,除地虫硫磷的萃取回收率为68.56%外,其他75种农药的回收率≥70%。因此选择0.5 mL作为洗脱剂体积。
2.2.6洗脱时间
实验同时考察了涡旋振荡洗脱时间为1、2、3、4和5 min时76种农药萃取回收率的变化。如图2f所示,当涡旋洗脱时间为1 min时,除敌敌畏的回收率为65.12%外,75种目标物的萃取回收率均大于70%,继续增加涡旋时间,目标物的萃取回收率未有显著变化,为了保证检测效率,选择涡旋振荡洗脱时间为1 min。
2.3 方法验证
2.3.1基质效应
基质效应是由于样品中基质与待测目标物共存而导致待测目标物在仪器中响应信号有不同程度增强或抑制的现象,从而影响测定的精确度。为了考察基质效应,选择3种空白基质萃取液,配制系列空白基质匹配标准溶液(0.5、1.0、10、50和100 μg/L),同时用甲醇逐级稀释配制相同浓度的溶剂混合标准溶液。通过计算基质匹配标准曲线与溶剂混合标准曲线斜率的比值来考察基质效应。若等于1,表明无基质效应;若比值范围为0.8~1.2,表明无明显基质效应或基质效应可以忽略。结果表明,金银花、菊花、三七块根(干)3种中药材的基质效应值分别为0.58~1.30、0.81~1.45和0.73~1.36,均超出上述无明显基质效应范围,3种中药材的基质效应主要表现为基质增强效应。因此本实验采用空白基质匹配标准补偿基质效应。
2.3.2线性范围、检出限和定量限
用1.3节方法处理后的空白中药材萃取液稀释混合农药标准储备液,配制成2、10、20、100和200 μg/kg的系列基质匹配标准溶液,在优化实验条件下进行测定,得到线性方程和线性相关系数(r2),76种农药在10~200 μg/kg范围内,呈良好的线性关系,相关系数均大于0.996 5。以S/N≥3和S/N≥10分别计算检出限(LOD)、定量限(LOQ),结果见表S1所示(详见http://www.chrom-China.com)。
2.3.3回收率和精密度
采用1.3节样品处理方法,对金银花、菊花、三七块根(干)3种中药材进行76种农药3个水平(20、80和150 μg/kg)的加标回收率试验,每个水平重复3次,采用外标法定量。如表S2所示,3个水平下,金银花、菊花、三七块根(干)3种中药材的萃取回收率分别为69.1%~112.2%、67.1%~102.8%和70.1%~105.1%,RSD分别为2.0%~12.4%、2.1%~13.2%和2.0%~13.5%,满足药用植物检测要求[25],说明所建立方法整体准确度和精密度良好。
2.4 方法比较
本文所建立方法与其他文献中报道方法比较如表2所示,本文所使用方法具有低消耗(样品、磁性萃取材料用量)、操作简便、灵敏度较高等优点,适用于非液态中药材基质中多种类农药残留的检测。
表2 本方法与其他方法的比较Table 2 Comparison of the proposed method with some other methods
2.5 实际样品测定
将建立的MMSPD-HPLC-MS/MS分析方法应用于3种中药材,包含市售金银花5个、菊花3个、三七块根(干)2个共计10个样品,除1个金银花检出多菌灵外,其余样品均未检出农药残留或低于定量限,并且检出阳性金银花样品中多菌灵的残留量未超出2020年版中《中国药典》的限度规定[26]。金银花阳性样品的多反应监测色谱图见图3。
图3 金银花阳性样品的多反应监测色谱图Fig.3 Multiple reaction monitoring chromatogram of the positive honeysuckle sample
同时,采用GB 23200.11-2016和本文所建立方法对金银花阳性样品进行定量分析,平行测定5次,以GB 23200.11-2016方法所测得多菌灵的平均含量(11.9 μg/kg)为已知值,本文所建立方法多菌灵的5次检出含量依次为11.6、12.7、12.9、12.1和13.2 μg/kg,采用t检验法比较本方法测定值和已知值,t测定=2.20 本研究针对中药材农药多残留检测中前处理步骤复杂、吸附剂萃取目标物种类少等问题,制备了磁性亲水亲脂平衡材料Fe3O4@PLS,采用磁性萃取剂与样品直接研磨分散,无需有机溶剂预提取,同时借助施加外部磁场进行磁性基质固相分散萃取,有效简化了传统基质分散固相萃取的装柱步骤,结合高效液相色谱-串联质谱法进行检测,建立了一种有效测定固体或粉末状中药材样品中农药多残留的方法。本方法在非液体中药材中痕量农药多残留的检测方面具有较高的应用价值,将为中药材中农药残留的筛查和质量控制的研究提供可靠依据。3 结论