APP下载

环江油田L158区块长812段水下分流河道单砂体空间组合样式及其对剩余油分布的影响

2022-04-01刘庆海王博涛阮金凤朱玉双

油气地质与采收率 2022年2期
关键词:泥质砂体侧向

刘庆海,王博涛,阮金凤,阎 娜,朱玉双

(1.西北大学大陆动力学国家重点实验室,陕西西安 710069;2.中国石油长庆油田分公司第五采油厂,陕西西安 710018)

随着构型理论的发展,中国学者应用构型研究方法在碎屑岩砂体精细刻画领域取得了显著成就[1-8]。近年来,三角洲前缘单砂体精细刻画成为研究热点[9-13],浅水三角洲作为一种成藏条件优异且广泛分布于中国各大沉积盆地的特殊三角洲越来越受到重视。许多学者针对浅水三角洲沉积模式[14-17]、砂体发育特征[18-20]及单砂体刻画[21-24]等方面开展了大量工作。然而,浅水三角洲单砂体刻画主要集中于单砂体定性划分及横纵向叠置关系研究,对单砂体定量划分和空间组合样式以及剩余油分布特征的研究较为薄弱。

2015 年以来鄂尔多斯盆地环江油田储量稳步上升,但近年出现见效特征不明显及产液量下降速度快等开发问题,笔者推测与该区未建立有效的驱替系统有关,而前人对该区的研究主要集中于沉积相及致密储层成因方向[25-28]。为此,基于环江油田L158 区块,利用井网测井资料及生产数据,对浅水三角洲水下分流河道单砂体进行半定量划分;以此为基础,分析水下分流河道单砂体空间叠置关系,探讨不同叠置关系下的剩余油分布特征,完善浅水三角洲单砂体构型及剩余油分布研究,以期为相关研究提供参考。

1 区域地质概况

环江油田L158 区块长8 油层组砂体在沉积时受西南方向主物源控制,以南部及西北方向物源为辅[29-31],沉积水体较浅,主要发育浅水三角洲沉积[32-34]。长812段砂岩以灰色、深灰色细-粉砂岩为主,分选性及磨圆度均较好,发育块状层理、平行层理及砂纹交错层理,可见泥砾;泥岩以灰黑色与黑色为主,含植物碎屑且以茎干化石为主。该段主要发育辫状河三角洲前缘亚相沉积,以水下分流河道、水下分流间湾及水下天然堤为主要沉积微相。水下分流河道单砂体在不同沉积时期频繁摆动,形成大规模连片状及条带状的复合砂体(图1)。

图1 环江油田L158区块长812段沉积微相平面展布

2 单砂体构造界面划分

2.1 垂向划分

2.1.1 隔夹层层次划分

依据Miall 储层构型分级方案[35-36],将研究区水下分流河道单砂体构型界面划分为3个层次(表1)。5 级界面所对应的侵蚀面是划分复合河道砂体的依据,复合河道砂体内部分级划分即4 级界面则是识别水下分流河道单砂体的依据。4级界面分为2种:第1 种是水下单河道顶底面,其界定了单一河道砂体与其上、下单一河道砂体间的垂向关系,以泥质隔夹层为主且发育较稳定;第2 种是废弃单河道侧面,其界定了同期次不同单一砂体间泛滥平原细粒沉积单元,以钙质及物性夹层为主,沉积界面分布不稳定。3 级界面识别了单一河道内部增生体,以泥质、物性和钙质夹层为主,因沉积时期和沉积厚度等差异,夹层电性上存在明显区别。单砂体垂向划分主要建立在4级隔夹层界面识别的基础上。

表1 环江油田L158区块长812段单砂体构型界面分级Table1 Architecture interface classification of single sandbodies of Chang812 in L158 Block,Huanjiang Oilfield

2.1.2 4级隔夹层界面识别

通过选取特征明显的取心井,绘制研究区4 级隔夹层岩性-电性特征交会图(图2),对该区4 级隔夹层界面进行定量识别,建立隔夹层测井识别标准,为全区单砂体标定确立基准。

泥质隔夹层 岩性以泥岩和粉砂质泥岩为主。由两期水下分流河道之间的间湾沉积形成,位于水下单河道沉积顶底面且分布较稳定。电阻率为6.4~20.5 Ω·m(表2),是区分泥质隔夹层与其他隔夹层的最主要标志。此外结合高声波时差和高自然伽马的特征(图2),可以更精准地划分泥质隔夹层。

表2 环江油田L158区块长812段4级隔夹层测井响应识别参数Table2 Logging response identification parameters of fourth level interlayers of Chang812 in L158 Block,Huanjiang Oilfield

图2 环江油田L158区块长812段4级隔夹层岩性-电性特征交会图Fig.2 Lithology-electr ical property crossplots of fourth level interlayers of Chang812 in L158 Block,Huanjiang Oilfield

钙质隔夹层 岩性主要为钙质团块及钙质胶结的致密砂岩,形成于湖平面上升导致的浅水蒸发环境中,分布具有随机性。钙质隔夹层以高电阻率(45.2~76.2 Ω·m)及低声波时差(198.6~230 μs/m)的特征与其他隔夹层有效区分。此外自然伽马较低也是钙质隔夹层的重要表现。

物性隔夹层 物性隔夹层形成于上、下两期单砂体沉积之间,因两者岩性与物性具有明显差异而产生的沉积间歇面,分布极不稳定且难识别。低密度(2.21~2.4 g/cm3)特征是其重要的测井识别标志,也是区分物性隔夹层与其他隔夹层的关键。

2.2 平面划分

单砂体平面划分建立在沉积微相研究的基础上,不同单砂体受物源供给、水动力条件、水下分流河道摆动及古气候等因素的影响,其沉积位置(同期)及沉积形态、厚度(不等时)存在差异。根据研究区单砂体的沉积差异总结出2种单砂体平面识别标准。

砂顶高差 处于同一沉积期次的不同水下分流河道,砂体沉积时受河道底界、物源供给及沉积时间等因素影响,其沉积砂体顶部距分层顶面距离存在差异。依据砂顶高差(图3a)对相邻单砂体进行有效划分。

砂厚差异 水下分流河道单砂体的形态为顶平底凸,依据垂直物源方向开发井砂厚差异(图3b),明确沉积砂体侧向延展范围并确定河道边界。

图3 环江油田L158区块长812段单砂体平面识别标志Fig.3 Plane identification marks of single sandbodies of Chang812 in L158 Block,Huanjiang Oilfield

对于相邻井位砂体厚度及测井曲线没有明显差异的单砂体,运用上述方法难以划分,可应用宽厚比进行单砂体平面识别与划分。前人研究认为水下分流河道单砂体侧向展布宽度与沉积厚度具有一定关联,称之为宽厚比,浅水三角洲宽厚比集中在65~82[8,10,13,15]。通过分析研究区的井间生产数据,再依据单砂体平面识别标准划分水下分流河道单砂体并计算出其宽厚比平均为67.9。

2.3 单砂体划分结果

依据单砂体平面识别标准,将研究区长812段划分为三期共25 个单砂体。单砂体宽度为230~450 m,厚度为4~10 m,整体呈北东—南西向条带状展布。各单砂体侧向相互接触且平面上表现为连片分布的复合砂体。

3 单砂体叠置关系及识别标准

浅水三角洲沉积过程中,因水下分流河道的摆动、湖面升降与物源供给变化(A/S),不同水下分流河道单砂体之间存在垂向及侧向上的叠置[37]。基于研究区开发井网顺物源及垂直物源连井剖面,总结了单砂体3 种垂向叠置关系和4 种侧向接触关系并建立了识别标准。

3.1 垂向叠置关系及识别标准

依据垂向上两期水下分流河道单砂体之间的接触形态,将研究区水下分流河道单砂体垂向叠置关系划分为分离式、垂接式及垂切式3种类型,并依据单砂体叠置形态及隔夹层类型差异,明确各垂向叠置关系识别标准。

分离式 水下分流河道单砂体垂向上孤立存在,上、下砂体不连通,砂体中间发育细粒沉积,为水动力减弱时期的产物(图4a)。研究区分离式单砂体中间发育泥质隔夹层或钙质隔夹层。发育泥质隔夹层的井段电阻率曲线上表现为2个分离的箱型或钟型,曲线中部为明显的低电阻率回返,依照4级泥质隔夹层划分标准可有效识别(表2);发育钙质隔夹层的井段测井曲线表现为中等偏低声波时差曲线与中等偏高电阻率曲线呈似镜像分布,曲线中部出现低声波时差和高电阻率的异常特征,表现为向两侧突出的尖刺,可通过4 级钙质隔夹层划分标准有效识别(表2)。分离式叠置关系是研究区最为发育的垂向叠置类型,占比为44.5%。

图4 环江油田L158区块长81段单砂体垂向叠置关系Fig.4 Vertical superposition types of single sandbodies of Chang812 in L158 Block,Huanjiang Oilfield 2

垂接式 两期水下分流河道单砂体垂向上接触,上、下砂体弱连通,砂体中间普遍发育较薄的泥质沉积,晚期河道对早期单砂体无冲刷或弱冲刷。垂接式单砂体中部发育泥质隔夹层或物性隔夹层。发育泥质隔夹层的井段自然电位及自然伽马曲线表现为2 个相接的箱型或钟型,曲线中部为窄而陡的高自然伽马和高自然电位回返;发育物性隔夹层的井段自然电位及自然伽马曲线表现为2个阶梯状相连的箱型(图4b)。垂接式叠置关系在研究区较为发育,占比为30.5%。

垂切式 两期水下分流河道单砂体垂向上切割,上、下砂体连通性强,砂体直接接触,晚期河道对早期河道砂体具有明显的冲刷作用。垂切式单砂体中部发育物性隔夹层,该井段自然电位及自然伽马曲线表现为2 个阶梯状相连的箱型,与发育物性隔夹层的垂接式接触砂体井段测井曲线响应类似,可通过连井剖面及动态响应特征进行区分(图4c)。垂切式叠置关系在研究区占比相对最低,为25%。

3.2 侧向接触关系及识别标准

单砂体侧向接触关系是某一沉积时期单砂体的相对位置在平面上的表现,是一个同期不等时的概念。不同水下分流河道单砂体受物源供给、水动力条件、水下分流河道摆动及古气候等因素影响,其沉积位置(同期)及沉积形态、厚度(不等时)存在差异,根据差异类型将研究区水下分流河道单砂体侧向接触关系划分为间湾接触、堤岸接触、对接接触及侧切接触4种。

间湾接触 两条单河道沉积的砂体彼此独立存在,砂体中间为水下分流间湾泥质沉积阻隔。间湾接触关系易识别,开发井连井剖面上显示为具砂顶高差或厚度差异的2 个单砂体之间发育泥质沉积,电阻率曲线表现为高阻箱型-低阻直线-高阻箱型(图5a)。研究区此类接触关系占比低,为8.2%,与物源供给充足、河流改道频繁及浅水三角洲平缓的沉积环境有关。

堤岸接触 两条单河道沉积的砂体不直接接触,由水下天然堤砂体连接。堤岸接触关系易识别,开发井连井剖面上显示为2 个单砂体之间发育粉砂岩沉积,电阻率曲线表现为高阻箱型-低阻齿化型-高阻箱型(图5b)。研究区沉积环境不利于此类接触关系的形成,堤岸接触占比仅为3.6%。

对接接触 两条单河道沉积的砂体相互接触,但其切叠作用不明显。对接接触没有明显易识别的测井曲线特征,但由于单砂体顶平底凸的沉积样式及不同单砂体存在明显沉积高度和厚度差异,依据开发井连井剖面砂体的砂顶高差及厚-薄-厚的砂体形态,结合砂体侧向延展程度对该类型接触关系进行识别(图5c)。研究区对接接触较发育,占比为31.7%。

侧切接触 两条单河道沉积的砂体直接接触,后期沉积对前期河道砂体切割改造作用强烈。侧切接触在开发井连井剖面上显示为2个不同单砂体侧切叠合的长段砂体,电阻率曲线表现为箱型-叠合箱型-箱型,其中2 个箱型曲线代表了2 个不同单砂体,叠合箱型为2 个单砂体相切部位在电阻率曲线上的体现。不同单砂体沉积时间及厚度存在差异,其箱型电阻率曲线的厚度可能不同(图5d)。受益于研究区河道侧向展布较宽和河道改道频繁等因素,侧切接触发育,占比为56.5%。

图5 环江油田L158区块长812段单砂体侧向接触关系Fig.5 Lateral contact types of single sandbodies of Chang812 in L158 Block,Huanjiang Oilfield

4 单砂体空间组合样式及成因分析

研究区单砂体之间存在3 种垂向叠置关系及4种侧向接触关系,理论上可存在12种空间组合样式(图6)。研究区不发育I 类(垂切间湾式)及J 类(垂切堤岸式)空间组合样式,其余空间组合样式依据占比由高到低分别为:D 类(分离侧切式)占比为24.1%,H 类(垂接侧切式)占比为17.4%,L 类(垂切侧切式)占比为15%,C 类(分离对接式)占比为13%,K类(垂切对接式)占比为10%,G类(垂接对接式)占比为8.7%,A 类(分离间湾式)占比为4.9%,E类(垂接间湾式)占比为3.3%,B 类(分离堤岸式)占比为2.5%,F类(垂接堤岸式)占比为1.1%。

图6 浅水三角洲水下分流河道单砂体空间组合样式Fig.6 Spatial combination modes of single sandbodies in underwater distributary channel of shallow water delta

前人研究表明,浅水三角洲前缘砂体的叠置关系一般受砂体可容纳空间(A)与沉积物补给通量(S)之间变化的控制[6,38],与研究区古地貌、物源供给及水下分流河道改道密切相关。当可容纳空间大而物源供给较弱时,水下分流河道单砂体沉积厚度薄,砂体垂向间彼此不接触,多发育A 类和B类组合样式;当可容纳空间与物源供给相近时,水下分流河道对早期沉积的砂体具有一定的冲刷作用,但受限于冲刷能量不足且砂体垂向切割作用弱,以F类和G 类组合样式较为常见;当物源供给远大于可容纳空间时,沉积能量充足,砂体下切作用明显且侧切作用强烈,此时多发育K类和L类组合样式。

由于受多种复杂因素影响,研究区形成“垂向切割作用不强、侧向切割作用明显”的沉积状态,其中浅水三角洲沉积的特殊性和平缓的沉积地貌是影响单砂体空间组合样式的重要因素。浅水三角洲沉积的特殊性表现在沉积水体浅,以水下分流河道为沉积主体,河道的分叉性及迁移性强,砂体沉积的侧向切割作用明显;另一方面较浅的沉积环境及较弱的水动力条件导致了单河道单期沉积的砂体厚度较薄,垂向上切割作用不强,分离式叠置关系占优。研究区构造改造作用弱,长8 油层组沉积时期地层平缓,较充足的物源供给为水下分流河道“填凹”后“侧移”提供了物质基础,易形成大面积片状展布的沉积砂体,与浅水三角洲沉积的特殊性共同作用,最终形成了分离侧切式占优,垂接侧切式、垂切侧切式及分离对接式发育的单砂体空间组合样式。

5 单砂体叠置关系对储层开发的影响

5.1 单砂体叠置关系与砂体连通性

单砂体叠置关系体现了单河道的摆动与砂体沉积的复杂性,关系到不同沉积砂体之间的连通性[39-41],具体表现为不同砂体能否形成流动单元,直接影响到注水开发效率及剩余油的分布[42-44]。

单砂体垂向叠置关系主要影响早晚两期单砂体之间的纵向连通性。分离式砂体因层段中间泥质隔夹层或钙质隔夹层的发育,其纵向不连通,合理注采开发后,底部砂岩见效快,剩余油易富集于上方砂体顶部。垂接式砂体后期河道冲刷作用弱,早晚两期单砂体保存完整,隔夹层较发育,难以形成有效的流动单元,其纵向连通性弱,为弱连通或不连通。垂接式砂体注水开发时受上、下单砂体高差影响,其水驱路径沿上部砂体至下部砂体,较差的纵向连通性使得上部砂体侧翼形成剩余油富集区,富集区范围受砂体厚度及注水强度影响。垂切式砂体后期河道改造作用强,前期河道上部的泥质或钙质沉积被冲刷殆尽,其纵向连通性强,为优秀的流动单元。垂切式砂体注采开发时,水驱路径与垂接式砂体相似,但较强的纵向连通能力使得水驱覆盖范围更广,剩余油富集区较同等砂体厚度的垂接式砂体更小。

单砂体侧向接触关系主要影响同期不等时的2条单河道沉积的砂体之间的横向连通性,间湾接触及堤岸接触的2个单砂体之间为水下分流间湾或水下天然堤的细粒沉积物,单砂体之间侧向不连通。对接接触的2 个单砂体之间切割叠置部分较少,且接触部分一般为沉积体上部细粒沉积部位,难以形成有效的流动单元,侧向连通性弱。间湾接触、堤岸接触及对接接触3种类型的砂体在进行注水开发时,因砂体侧向连通性差,2 个单砂体的原油分别受控于注水井注水驱动及采油井地层压力开采,易于单砂体临近部位形成2个剩余油富集区。侧切接触砂体切割冲刷作用强烈,砂体之间的泥质及细粒沉积物被冲刷殆尽,整体表现为有效的流动单元,砂体侧向连通性强,一般不形成剩余油富集。

5.2 单砂体空间组合样式与剩余油分布

研究区单砂体叠置关系的多变性及连通关系的复杂性增加了剩余油研究难度,针对不同的单砂体空间组合样式进行砂体连通性及水驱路径分析,明确单砂体空间组合样式对剩余油分布的控制作用(图7)。

图7 单砂体空间组合样式对剩余油分布的控制作用Fig.7 Effect of spatial combination modes of single sandbodies on remaining oil distribution

双向弱连通式砂体即分离间湾式、分离堤岸式和分离对接式砂体,其上方砂体侧翼与下方砂体顶部剩余油富集;侧向弱连通式砂体即垂接间湾式、垂接堤岸式、垂接对接式、垂切间湾式、垂切堤岸式和垂切对接式砂体,其上方砂体侧翼剩余油富集,下方砂体剩余油不富集;强连通性砂体即垂接侧切式和垂切侧切式砂体剩余油不富集。

6 结论

建立研究区纵向泥质隔夹层、物性夹层与钙质隔夹层划分标准,在平面砂顶高差及砂厚差异划分机制的基础上,将环江油田L158 区块长812段划分为三期共25 个单砂体。单河道宽度为230~450 m,单砂体厚度为4~10 m,宽厚比平均为67.9。

水下分流河道单砂体垂向上划分为分离式、垂接式及垂切式3种叠置关系,侧向上发育间湾接触、堤岸接触、对接接触及侧切接触4种接触关系,形成12 种空间组合样式。研究区存在10 种单砂体空间组合样式,其中分离侧切式、垂接侧切式、垂切侧切式、分离对接式及垂切对接式较为发育。

浅水三角洲沉积的特殊性是影响单砂体空间组合样式的主要因素,平缓的沉积地貌是影响单砂体组合空间样式的重要因素。单砂体不同的空间组合样式控制了剩余油分布。

猜你喜欢

泥质砂体侧向
一起飞机自动改平侧向飘摆故障分析
砂体识别组合方法在侧缘尖灭油藏的应用
军航无人机与民航航班侧向碰撞风险评估
严寒地区城市河道底泥泥质分析及治理技术研究
曲流河复合点坝砂体构型表征及流体运移机理
富县地区长8致密油储集砂体成因及分布模式
渤海河流相油田储层连通性研究与挖潜实践
——以KL油田3-1483砂体为例
《原地侧向投掷垒球》教学设计