APP下载

低阻页岩电阻率主控因素研究

2022-02-26崔瑞康孙建孟刘行军文晓峰

物探与化探 2022年1期
关键词:成熟度测井导电

崔瑞康,孙建孟,刘行军,文晓峰

(1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580; 2.中油集团测井公司 长庆分公司,陕西 西安 710065)

0 引言

随着多年来的勘探与开发,国内外大多数勘探难度相对较低的构造性油气藏已经被发现并开发,因此勘探对象逐渐转向以岩性圈闭为主的隐蔽油气藏,其中低阻油气藏是其中很重要的一类。低阻油气藏在我国各油气田均广有分布,如渤海湾、准噶尔、塔里木、松辽、四川和吐哈等盆地,均发现了大量的低阻油气层,对于油气增储上产意义重大[1]。无论常规油气藏中的储层岩性、物性、电性和含油性“四性”关系,还是非常规页岩气藏中的储层岩性、物性、含气性、地化特性、可压裂性、地层压力及测井属性的“七性”关系,电阻率测井的作用都十分重要[2-4]。孙建孟等[5]给出了低阻油气层的定义:油气层电阻率相对于邻近水层而言,电阻率值偏低并引起油水层解释困难的一类油气层;一些研究人员将页岩储层低电阻率原因归结为高成熟有机质石墨化、黏土矿物附加导电、黄铁矿导电等原因[6-12];还有一些研究人员发现储层孔隙结构变差会导致束缚水饱和度增高,进而形成低阻油气层[13-14]。王友净等[15]发现沉积、成岩、油藏特点的综合影响会形成低阻油层;罗水亮等[16]从地质及工程因素角度对低阻气层的形成机制进行了深入研究,发现在地质成因方面是由于水动力条件较弱导致地层岩性粒度细、黏土矿物含量高以及束缚水饱和度高,并且地层水矿化度高,孔隙结构复杂等因素进一步降低了气层电阻率;工程成因是由于钻井液侵入和地层浸泡时间影响了气层电阻率;于红岩、郑华、林国松等[17-19]研究发现构造作用、沉积环境、成岩机理、古物源、古气候等因素在宏观层面影响油气层电阻率;地层水矿化度、束缚水饱和度、黏土矿物附加导电性以及泥质含量等因素在微观层面影响油气层电阻率;罗兴平等[20]研究发现在泥质、黏土矿物含量不高时,特殊的黏土矿物组成能够产生较高的附加导电性和束缚水含量,进而造成油气层呈现低阻特征。

本文在前人研究的基础上,全面分析页岩气储层低电阻率的主要影响因素及其导电机制,并结合龙马溪组低阻页岩气储层的地质资料及测井资料分析与评价低阻页岩气储层,以促进低阻页岩气储层的测井解释发展,提高页岩气含气量评价的精确度。

1 黏土矿物导电能力分析

黏土、有机质、细粒碎屑等矿物是页岩的主要组成成分,其中黏土的体积分数可达30%~50%。黏土矿物主要包括蒙脱石、伊利石、绿泥石、高岭石等(图 1)。黏土矿物的含量对页岩电阻率有一定的影响,主要表现在黏土矿物的附加导电性和黏土矿物导致束缚水饱和度增高引起的电阻率降低(图 2)。图2中的A、B、C3口井均位于四川南部地区。

黏土矿物中,高岭石单元晶层中一面为O层,另一面为OH层;O层和OH层可以形成较强的氢键,与层之间结合非常紧密,层间距仅为0.72 nm,水分子不容易进入晶层,故高岭石亲水性差,且性能比较稳定。蒙脱石单元晶层两面都是O层,无法形成氢键(层与层之间为分子间力),层与层之间结合不紧密,水分子容易进入,故蒙脱石具有亲水性,并且吸水膨胀。伊利石吸水能力位于蒙脱石和高岭石之间,亲水性仅次于蒙脱石。蒙脱石和伊利石具有多微孔结构,比表面积大,对页岩中水的分布具有明显影响。通过分析QEMSCAN(quantitative evaluation of minerals by sacnning electron microscopy)页岩薄片(图 3)可知,黏土矿物中以蒙脱石和伊利石为主,所以,页岩中黏土矿物增加会导致页岩微孔增多,使束缚水饱和度增加,导电能力增强,电阻率下降。

图1 研究区矿物含量分布和黏土矿物分布Fig.1 Mineral content distribution and clay mineral distribution map of the study area

图2 黏土矿物与电阻率关系Fig.2 Clay minerals and resistivity diagram

黏土矿物表面是负电荷,因而当它在地层中时会吸附地层中的阳离子达到电中性,黏土矿物对阳离子的这种吸附作用使得地层中阳离子积聚在黏土矿物表面,造成浓度差。因为浓度差的存在,阳离子存在由高浓度向低浓度扩散的趋势,并且在扩散到一定厚度时和吸附力达到平衡;此时,黏土矿物表面和地层之间存在电势差,形成离子双电子层,并引起阳离子交换作用,形成扩散—吸附电动势。这就是黏土矿物的附加导电性,通常可以用阳离子交换容量(CEC)表示黏土矿物附加导电性的强弱。于庆洲[1]研究发现,黏土矿物阳离子交换吸附的电荷中,晶格内的类质同象替代现象产生的电荷占有主要地位。因此,黏土矿物的阳离子交换容量主要由晶格内的类质同象替代决定。蒙脱石中广泛发育晶格内的类质同象替代,所以阳离子交换容量最大;高岭石不发育晶格内的类质同象替代,阳离子交换容量最小;伊利石在两者之间。通过研究发现,部分页岩气储层黏土矿物含量极高,此时黏土矿物的扩散—吸附电动势对储层电阻率的影响就至关重要,甚至在部分有机质含量较低的储层,黏土的附加导电性可以成为主导因素。但是,黄涛[21]、赵文龙[10]等研究发现,黏土矿物含量过高时会引起脆性矿物的减少,在地层的压实作用下渗透率和孔隙度减小,黏土矿物会充填储层的原生孔隙,从而破环储层的导电网络,使得储层电阻率上升。

图3 矿物质定量分析Fig.3 Mineral quantitative analysis diagram

2 有机质过成熟导电能力分析

自生自储是页岩气藏和常规气藏之间最显著的区别。页岩气层既是产气的烃源岩层也是储层,主要特征包括有机质成熟度、丰度和类型等,其中有机质成熟度是评价页岩气层的一个重要指标。根据美国页岩气主产区泥页岩成熟度研究成果,页岩气产层可以根据有机质成熟度的不同分为过成熟页岩气、过—低成熟度混合页岩气和低成熟页岩气3种[22]。刘天琳等[23]以镜质体反射率(RO)3.0%和3.5%为界限,将富有机质海相页岩划分为未石墨化海相页岩(RO≤3.0%)、部分石墨化海相页岩(3.0%3.5%)。

Kethireddy等[24]研究发现,有机质成熟度、导电能力、含量、孔隙度、含气饱和度及有机质与地层水之间的连通性等都会对页岩气储层电阻率产生重要影响,并且运用数值模拟的方式对有机质的影响进行了定量分析。张建坤等[25]研究发现,不同有机质成熟度会造成页岩气储层的孔隙结构不同,进而影响储层电阻率产生明显的差异。

选择位于四川盆地南部地区的A、B、C井中下古生界龙马溪组气层,分别统计电阻率、RO和孔径分布之间的关系。从图4、图5给出的统计结果可以看出:电阻率与RO负相关,RO与小于2 nm的孔径分布数量负相关。据李楚雄等[26]、邵龙义等[27]、霍培丽等[28]的相关研究,当有机质过成熟时,样品中的微孔显著发育,即热演化程度升高导致微孔更发育,岩石中的介孔及大孔数量减少。

在烃源岩的热演化过程中,随着温度和埋藏深度的不断增加,热成熟度升高,有机质会发生降解,随后有机质会释放出碳氢化合物并逐渐转变成含氢量比较低的碳质残余物,这一过程就是有机质石墨化过程。石墨为良好导体,有机质为不良导体,因此高成熟度储层电阻率会比较低。Yang A等[29]通过热解实验和分析TEM图像发现,高TOC以及泥岩和有机质样品成熟度都可导致芳香度的增加和石墨状组分的存在,从而降低了样品的电阻率。

图4 电阻率与RO之间的统计关系Fig.4 Statistical relationship between resistivity and RO

图5 RO与孔径分布之间的统计关系Fig.5 Statistical relationship between RO and aperture distribution

综上所述,随着有机质热演化程度增高,有机质逐渐石墨化、芳香度增加以及小于2 nm的微孔更发育,岩石中的介孔及大孔数量减少,导致储层电阻率降低。

3 含有机质纹层分布形式与导电能力分析

烃源岩中有足够数量的有机质,包括可溶有机质和不溶有机质两部分,足够数量的有机质是油气生成的物质基础,是决定烃源岩生烃能力的主要因素,也是油气能否聚集成藏的主要控制因素。其中可溶有机物可用于母岩中有机质的输入和沉积环境的研究,以确定母岩和油源对比,为研究石油成因及石油可能的运移途径提供丰富的信息。

岩心与测井电阻率统计分析(图 6)表明: 有机质是否导电对岩心导电性影响最大,泥质和黄铁矿都具有一定的附加导电性;随着含量的变化,泥质对导电性的影响较大,黄铁矿由于分布较为分散,对岩心的电阻率没有显著影响。综合多种尺度的页岩导电因素影响规律研究,厘定了影响因素排序:导电有机质>低阻薄层>黏土矿物>孔隙水>黄铁矿。

图6 岩石各组分对电阻率的影响Fig.6 Influence of various rock components on resistivity

3.1 含有机质纹层分布形式

层理是指岩层中物质的成分、颗粒大小、形状和颜色在垂直方向发生改变时产生的纹理,当层理足够小的时候为微层理又可以称为纹层。通常情况下,纹层的类型和厚度等信息可反映沉积环境的变化[30],但是纹层中有机质和黏土成层分布对页岩电阻率也有影响,这对于探究微观源储特征及关系从而了解该地区低阻成因机理具有重要意义。

利用偏光显微镜、QEMSCAN和荧光显微镜可研究纹层形态、厚度及分布特征,利用X射线衍射对纹层内部的矿物组成进行定量分析,利用扫描电镜可研究纹层内部的矿物充填情况[31]。在荧光显微镜下,有机质纹层连续分布(图 7a)、断续分布(图 7b)或者零散分布(图 7c);有机质纹层较薄,厚度一般小于0.02 mm。有机质纹层可以分为富有机质纹层和含有机质纹层[32]。在偏光显微镜下,多个纹层相互堆叠形成界面不明显的富有机质层(图 8a);部分纹层有机质呈块状分布,多个纹层相互堆叠形成界面不明显的含有机质层(图 8b);富有机质纹层和含有机质纹层相互堆叠形成递变层(图 8c)。

利用X射线衍射分析对含有机质纹层的页岩薄片中的矿物组成进行定量分析(表1),利用QEMSCAN技术对页岩薄片矿物集合体嵌布特征进行分析(图 9)。该岩样为龙马溪组灰黑色炭质泥岩,采样深度3 084.09 m,测得电阻率为0.1 Ω·m,高阻脆性矿物分布广泛,发育有黏土纹层、有机质纹层等。将表1的矿物组分含量和图 9的页岩薄片进行对比分析,发现薄片含有大量伊利石和长石并含有部分黄铁矿,页岩发育有黏土纹层、有机质纹层等,纹层厚度0.1~1 mm,不同纹层之间呈现互层发育。结合李婷婷等[31]的研究成果可知:碳酸盐纹层以白云石为主,硅质纹层以长石为主,黏土纹层中黏土含量最高,并被有机质充填。从扫描电镜图片(图 10)可以看出黏土纹层发育层间孔,这些孔隙多为有机质充填,这为黏土纹层的导电提供了基础。经检测,该岩

a—龙马溪组灰黑色含硅质泥岩,采样深度为3 084.09 m,测得电阻率为0.1 Ω·m,发亮的黏土矿物(沸石)含量较高,呈顺层节理,有机质纹层也较为明显;b—龙马溪组黑色页岩,采样深度为3 931.72 m,测得电阻率为10 Ω·m,由于有机质及黏土矿物分布较混乱,纹层断续分布;c—龙马溪组黑色页岩,采样深度为4 039.3 m,测得电阻率为15.42 Ω·m,有机质含量较低,纹层零散分布a—a gray-black siliceous mudstone of the Longmaxi Formation with a sampling depth of 3 084.09 m, a resistivity of 0.1 Ω·m, a high content of bright clay minerals (zeolite), bedding joints, and obvious organic lamination; b—black shale of Longmaxi Formation with a sampling depth of 3 931.72 m and a measured resistivity of 10 Ω·m. Due to the disordered distribution of organic matter and clay minerals, the lamina is discontinuous; c—black shale of Longmaxi Formation with sampling depth of 4 039.3 m, measured resistivity of 15.42 Ω·m, low organic matter content and scattered laminae图7 荧光显微镜下有机质纹层分布特征Fig.7 Distribution characteristics of organic lamination under fluorescence microscope

a—龙马溪组灰黑色含硅质泥岩,采样深度3 084.09 m,电阻率为0.1 Ω·m,多个纹层相互堆叠,形成界面不明显的富有机质层;b—龙马溪组黑色页岩,采样深度3 931.72 m,电阻率为10 Ω·m,部分纹层有机质呈块状分布,多个纹层相互堆叠,形成界面不明显的含有机质层;c—龙马溪组黑色页岩,采样深度4 039.3 m,电阻率为15.42 Ω·m,富有机质纹层和含有机质纹层相互堆叠,形成递变层a—a gray-black siliceous mudstone of the Longmaxi Formation with a sampling depth of 3 084.09 m and a measured resistivity of 0.1 Ω·m. Multiple laminas stack each other to form an organic-rich layer with no obvious interface; b—black shale of Longmaxi Formation with a sampling depth of 3 931.72 m and a measured resistivity of 10 Ω·m. Some laminar organic matter is distributed in blocks, and multiple laminates stack each other to form organic matter bearing layers with no obvious interface; c—black shale of Longmaxi Formation with a sampling depth of 4 039.3 m and a measured resistivity of 15.42 Ω·m. The organic-rich laminae and organic-containing laminae stack each other to form graded layers图8 偏光显微镜下有机质纹层特征Fig.8 Characteristics of organic lamination under polarizing microscope

表1 页岩薄片矿物组成

心镜质体反射率RO=2.78%,有机质成熟度较高,表明有机质已经部分石墨化。综上所述,薄片以硅质纹层和黏土纹层为主,并伴有有机质纹层,这些纹层构成了导电网络。经过岩样电阻率实验可得,岩样电阻率为0.1 Ω·m,与其余岩心相比为低阻。

3.2 有机质导电能力

通过分割来自页岩的SEM图像,结合数值模拟来各自独立地对其游离扩散方式和有机质的层间空间展布进行研究。这些分割图像包括非导电颗粒,导电盐水和有机质。有机质的电阻率随着成熟度的变化有一个比较宽的波动变化范围,在107~10-7Ω·m(即从不导电到高导电)来定量研究有机质导电性在岩石电阻系数方面的影响。

图9 QEMSCAN页岩薄片Fig.9 QEMSCAN Shale Sections

图10 被有机质充填的黏土纹层Fig.10 Clay laminae filled with organic matter

假设孔隙空间完全饱和盐水,且有机质孔隙度被认为是零[24],图 11显示了分散状和层状有机质电阻率的敏感性。这些结果表明,对于有机质电阻率较高(高于100 Ω·m)的地层,即低成熟度地层,岩石的电阻率不受有机质存在的影响。然而,随着有机质连通网络在岩石中的增加(即有机质由分散状转变为层状),这个上限将增加到1 000 Ω·m左右。与分散的有机质的电阻率相比,有机质分层的地层电阻率有更大的降幅。这种急剧减少的情况是由于有机质的分层分布使有机质连通网络得以连接得更好。

图11 富含有机物的烃源岩电阻率和有机质电阻率的关系曲线Fig.11 Relation between the resistivity of source rocks rich in organic matter and the resistivity of organic matter

通过以上研究发现,在有机质导电的前提下(即有机质已经出现石墨化现象),层状分布有机质比分散状有机质更容易导电,并且随着有机质导电性增强,这种现象越加明显。这种现象在地层中的具体表现就是有机质在地层中的分布形式。有机质纹层主要有3种分布形式:连续分布(图 7a)、断续分布(图 7b)和零散分布(图 7c)。连续分布的有机质纹层整个有机质都在地层中呈层状分布,部分纹层与黏土纹层平行状分布,或者充填在黏土纹层之中,此时纹层形成的导电网络最好,对地层电阻率的影响最大;断续分布的有机质纹层在地层中呈间断的层状分布,有机质网络的连通性较连续分布有机质纹层差,对地层电阻率的影响也较连续分布纹层弱;零散分布的有机质纹层在地层中呈分散状分布,有机质之间被不导电的骨架矿物间隔,无法形成导电网络,对地层电阻率的影响最小。

4 页岩气储层低阻成因实例分析

本文针对川南扬子地区下古生界的龙马溪组出现的低阻现象探讨分析。结合研究区相应的地质、测井资料进行处理,利用测井及多井对比的方法分析低阻成因,认识并解释页岩储层的异常低阻现象,以避免因储层低阻现象造成测井解释评价的偏差。

图12是A井龙马溪组—五峰组的测井解释成果。经测井资料分析处理发现,在龙一段(3 020.2~3 062 m)和五峰组(3 062~3 102.74 m)出现异常低阻现象,平均电阻率仅为0.1 Ω·m。利用X衍射全岩分析技术对目的层段的46块岩心计算分析,结果如表2所示。常规测井曲线显示,龙马溪—五峰组2 678~3 102.74 m地层自上而下,岩性由泥岩、粉砂质泥岩等向含碳泥岩变化,地层电阻率数值呈下降趋势,自22 Ω·m最低降至0.1 Ω·m左右,与此相对应的是自然伽马数值升高,无铀伽马数值降低,地层中铀系元素含量增加;密度、中子曲线数值也呈现

图12 A井测井解释成果Fig.12 Logging interpretation results of Well A

表2 岩心矿物分析结果

数值降低趋势,反映地层有机碳含量、脆性矿物含量呈增加趋势。本段地层是本井页岩气储层的相对发育层段。

在3 084.09 m处所取岩心为灰黑色碳质泥岩,经X全岩衍射分析,大部分都为高阻的脆性矿物,黏土矿物含量较低,难以在电阻率曲线上表现出大段的低阻特征;导电性极强的黄铁矿在全岩中含量较少(体积分数低于7%),且在全岩中零星分布,构不成导电网络,其所增加的导电性也可以忽略不计。地层中的地层水也是重要的导电介质,但是在各个深度上地层水矿化度变化不大,不可能使上下层段电阻率值出现显著差异;在岩石物理实验中发现干岩样也存在极低阻现象。通过分析发现,该层段岩心有机质含量丰富,并且有机质成熟度较高(3.0%

5 结论

通过对龙马溪组低阻页岩气储层的地质资料及测井资料分析,并结合荧光照片等实验数据得出以下成果:①黏土矿物对页岩储层电阻率的影响主要为黏土矿物的附加导电性和黏土矿物导致束缚水饱和度增高引起的电阻率降低;②随着有机质热演化程度增高,有机质逐渐石墨化、芳香度增加以及小于2 nm的微孔更发育,岩石中的介孔及大孔数量减少,导致储层电阻率降低;③通过制作薄片或粉末,在偏光显微镜、荧光显微镜、扫描电镜以及X衍射全岩分析下对岩心样品进行有机质分布实验研究,页岩发育有机质纹层和黏土纹层,并且黏土纹层常被有机质充填或者和有机质纹层平行分布;④通过提取有机质进行电阻率测量研究,结合储层的岩性特征、常规物性特征、孔隙的储集空间特征以及有机质分布形式,发现当有机质成层分布时会显著降低页岩的电阻率。

随着页岩气勘探开发的持续发展,越来越多的低阻页岩储层被发现,深入认识页岩储层低阻成因机理有助于加深对储层低阻现象的认识,提高测井解释结果的准确性,进而正确认识含气性。

猜你喜欢

成熟度测井导电
本期广告索引
无Sn-Pd活化法制备PANI/Cu导电织物
产品制造成熟度在型号批生产风险管理中的应用
导电的风筝
测井工作中存在的误区与应对措施
我国测井评价技术应用中常见地质问题分析
整机产品成熟度模型研究与建立
给定置信水平下信息系统体系成熟度的灰色聚类方法
刚好够吃6天的香蕉
带螺旋形芯的高效加热线