APP下载

长链烯酮在西北大西洋重建全新世气候变化的研究进展

2022-02-12RashidHarunur

海洋科学 2022年1期
关键词:北大西洋融水长链

王 丹, Rashid Harunur

长链烯酮在西北大西洋重建全新世气候变化的研究进展

王 丹, Rashid Harunur

(上海海洋大学海洋科学学院, 上海 201306)

长链烯酮; 海洋表层温度; 冰融水; 烯酮%C37:4; 西北大西洋

全新世西北大西洋古气候变化的控制因素众多, 其中3个最主要的变化机制为: 1) 北半球65°N夏季太阳辐射的减弱是导致温暖的早全新世向较冷的晚全新世气候转变的主要机制之一[15-17]; 2) 来自极地或陆地残留冰盖的淡水输入通过改变海洋表层温度和盐度, 直接影响深层水的形成[18-19]。特别是有研究表明, 劳伦太德冰盖的Agassiz湖和Ojibway湖崩塌排泄的淡水引发了10.2 ka、8.2 ka等冷事件, 并削弱了深层水的形成[20-22]; 3) 末次冰期阶段, 北极锋从原本的南部位置撤退, 使得表层洋流(冷而淡的LC和暖而咸的NAC)重组和增强(图1)。因此, 研究认为SPG强弱状态的转换取决于剩余冰盖排放的淡水量[18-19, 23]。表层洋流的重组显著影响了加拿大东部边缘以及更为广阔的北大西洋北部的SST[24]。而SST的重建有利于评估全新世以来的古气候变化。

1 长链烯酮重建SST的概况

2 西北大西洋长链烯酮的研究

在世界各个大洋中, 长链烯酮广泛用于重建古气候学变化。这在北大西洋海域已有相当多且早的应用, 不仅是因为该海域本身的研究意义, 也是因为这里具有不同的环境特征, 有利于探讨长链烯酮的应用差异。图1, 表1中列出了北大西洋海域(以西侧为主)烯酮的研究情况, 但图表中并未列出所有的数据, 仅列出位于30°N与80°N之间的重要数据点, 在文中有所使用。

2.1 烯酮指标的现代过程

图1 北大西洋区域地图

注: LC-拉布拉多洋流; EIC-东冰岛洋流; EGC-东格陵兰洋流; IC-伊尔明厄洋流; SPG-副极地环流; WGC-东格陵兰洋流; NAC-北大西洋流; Nfld-纽芬兰岛; 图中圆形的颜色对应年均SST

表1 图1中各数据来源

2.2 低温海域烯酮的应用

3.1 营养盐对烯酮的影响

图2 烯酮不饱和度、和分别对年均和春-夏SST的回归模型[56]

3.2 横向平流和成岩作用对烯酮的影响

3.3 烯酮合成的季节性

4 %C37:4对海洋环境变化的指示作用

研究表明, 海洋环境中的C37:4主要出现在温度较低的海水中, Sicre等[65]和Bendle等[31]在北大西洋寒冷的极地海水(Arctic waters)中曾检测到含量较高的C37:4。Sikes等[69]也曾对大西洋、太平洋和南大洋的水体样品进行检测, 发现C37:4大多存在于盐度、温度都较低的水体中。Rosell-Melé等[59]最早提出%C37:4与盐度之间的函数关系; Sicre等[65]指出北大西洋%C37:4与盐度呈负相关(2= 0.78)。Bendle等[31]曾对%C37:4能否作为表层海水盐度指标进行评估, 认为其更适用于指示北大西洋淡水输入。Filippove等[56]曾推测, 融水输入导致盐度改变, 这可能会使藻类离开原本的耐盐区(salt tolerance zone), 导致了烯酮生物合成的改变。

在格陵兰西北岸的迪斯科湾, %C37:4的增加(最高可达28%)指示融水供应的增强; 其减少时, 融水通量也有相应的减少[32]。该研究区域海水盐度较低, 主要受格陵兰冰盖融水的影响。相似的, %C37:4在北极的北欧海和巴伦支海区域亦可指示寒冷北极水的输入[60]。此外, 在寒冷的拉布拉多海西北部, %C37:4还可用于指示海冰边缘环境, 当海冰覆盖减少时, C37:4的占比也有所降低, 与底栖有孔虫丰度指示的海冰信号相符[33]。在邻近的拉布拉多陆架南部, Lochte等[4]再次证明了高%C37:4(最高可达20%)指示海冰覆盖增多, 也可能是融水输入增强, %C37:4的降低反映海水温度的回升和海冰覆盖的减少。尽管此前仍有研究者对此提出异议[69], 但%C37:4指标仍有较为广泛的应用, 尤其是在受海冰影响且盐度较低的海域[31]。

5 总结与展望

[1] Myers P G, Donnelly C, Ribergaard M H. Structure and variability of the West Greenland Current in Summer derived from 6 repeat standard sections[J]. Progress in Oceanography, 2009, 80: 93-112.

[2] Rashid H, Boyle E A. Mixed-layer deepening during Heinrich Events: A multi-planktonic foraminiferal δ18O approach[J]. Science, 2007, 318(5849): 439-441.

[3] Salgueiro E, Voelker A H L, Martin P A, et al. δ18O and Mg/Ca Thermometry in planktonic foraminifera: A multiproxy approach toward tracing coastal upwelling dynamics[J]. Paleoceanography and Paleoclimatology, 2020, 35: e2019PA003726.

[4] Lochte A A, Schneider R, Kienast M, et al. Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years[J]. Climate of the Past, 2020, 16: 1127-1143.

[5] 叶孝贤, RASHID Harunur. 北大西洋 45°N 区氧同位素3期以来上层水体性质的变化[J]. 海洋地质与第四纪地质, 2021, 41(3): 114-123.

Ye Xiaoxian, RashidHarunur. Changes of the upper water column at the 45°N North Atlantic since marine isotope stage 3[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 114-123.

[6] Krawczyk D W, Witjowski A, Lioyd J, et al. Late-Holocene diatom derived seasonal variability in hydrological conditions off Disko Bay, West Green­land[J]. Quaternary Science Reviews, 2013, 67: 93-104.

[7] Mock T, Otillar R P, Strauss J, et al. Evolutionary genomics of the cold-adapted diatom[J]. Nature, 2017, 541: 536-540.

[8] Ouellet-Bernier M M, de Vernal A, Hillaire- Marcel C, et al. Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene[J]. The Holocene, 2014, 24(11): 1573-1583.

[9] Schouten S, Hopmans E C, Sinningghe Damste J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19-61.

[10] Seki O, Bendle J A, Harada N, et al. Assessment and calibration of TEX86paleothermometry in the Sea of Okhotsk and sub-polar North Pacific region: Implications for paleoceanography[J]. Progress in Oceanography, 2014, 126: 254-266.

[11] Martrat B, Grimalt J O, Shackleton N J, et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin[J]. Science, 2004, 317: 502-507.

[12] Naffs B D A, Hefter J, Acton G, et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma)[J]. Earth and Planetary Science Letters, 2012, 317/318: 8-19.

[13] Rodrigues T, Alonso-García M, Hodell D A, et al. A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin[J]. Quaternary Science Reviews, 2017, 172: 118-130.

[14] Li D W, Zhao M X, Tian J. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr[J]. Quaternary Science Reviews, 2017, 172: 72-82.

[15] Sachs J P. Cooling of northwest Atlantic slope waters during the Holocene[J]. Geophysical Research Letters, 2007, 34: L03609.

[16] Jiang H, Muscheler R, Björck S, et al. Solar forcing of Holocene summer sea-surface temperatures in the northern North Atlantic[J]. Geology, 2015, 43(3): 203-206.

[17] Orme L C, Miettinen A, Seidenkrantz M S, et al. Mid to late-Holocene sea-surface temperature variability off north-eastern Newfoundland and its linkage to the North Atlantic Oscillation[J]. The Holocene, 2021, 31(1): 3-15.

[18] Thornalley D J R, Elderfield H, McCave N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic[J]. Nature, 2009, 457: 711-714.

[19] Van Nieuwenhove N, Pearce C, Faurschou Knudsen M, et al. Meltwater and seasonality influence on Subpolar Gyre circulation during the Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoe­cology, 2018, 502: 104-108.

[20] Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8 200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400: 344-348.

[21] Lewis L, Ditchfield P, Pal J N, et al. Grain size distribution analysis of sediments containing Younger Toba tephra from Ghoghara, Middle Son valley, India[J]. Quaternary International, 2012, 258: 180-190.

[22] Rashid H, Piper D J W, Mansfield C, et al. Signature of the Gold Cove event (10.2 ka) in the Labrador Sea[J]. Quaternary International, 2014, 352: 212-221.

[23] Rashid H, MacKillop K, Sherwin J, et al. Slope instability on a shallow contourite-dominated continen­tal margin, southeastern Grand Banks, eastern Cana­da[J]. Marine Geology, 2017, 393: 203-215.

[24] Moffa‐Sánchez P, Moreno-Chamarro E, Reynolds D J, et al. Variability in the northern North Atlantic and Arctic Oceans across the last two millennia: A review[J]. Paleoceanography and Paleoclimatology, 2019, 34: 1399-1436.

[25] Moros M, Emeis K, Risebrobakken B, et al. Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland[J]. Quaternary Science Reviews, 2004, 23: 2113-2126.

[26] Sicre M A, Weckström K, Seidenkrantz M S, et al. Labrador current variability over the last 2000 years[J]. Earth and Planetary Science Letters, 2014, 400: 26-32.

[28] Keigwin L D, Sachs J P, Rosenthal Y. A 1600- year history of the Labrador Current off Nova Scotia[J]. Climate Dynamics, 2003, 21: 53-62.

[29] Rashid H, Marche B, Vermooten M, et al. Comment on “Asynchronous variation in the East Asian winter monsoon during the Holocene” by Xiaojian Zhang, Liya Jin, and Na Li[J]. Journal of Geophysical Research: Atmospheres, 2016, 121: 1611-1614.

[30] Halfar J, Adey W H, Kronz A, et al. Arctic sea- ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy[J]. PNAS, 2013, 110(49): 19737-19741.

[31] Bendle J, Rosell-Melé A, Ziveri P. Variability of unusual distributions of alkenones in the surface waters of the Nordic seas[J]. Paleoceanography, 2005, 20: PA2001.

[32] Moros M, Lloyd J M, Perner K, et al. Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland[J]. Quaternary Science Reviews, 2016, 132: 146-160.

[33] Lochte A A, Repschlager J, Seidenkrantz M, et al. Holocene water mass changes in the Labrador Current[J]. The Holocene, 2019, 29(4): 676-690.

[34] 邢磊, 杨欣欣, 肖睿. 长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 79-87.

Xing Lei, Yang Xinxin, Xiao Rui. Progress of cpm­positions and indications of long-chain alkenones[J]. Periodical of Ocean University of China, 2019, 49(10): 79-87.

[35] He Y X, Zhao C, Wang Z, et al. Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau[J]. Quaternary Science Reviews, 2013, 80: 47-57.

[36] Liu W G, Liu Z H, Fu M Y, et al. Distribution of the C37tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator[J]. Geochimica et Cos­mochimica Acta, 2008, 72(3): 988-997.

[37] Longo W M, Theroux S, Giblin A E, et al. Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: Evidence from northern Alaskan lakes[J]. Geochimica et Cosmochimica Acta, 2016, 180: 177-196.

[38] Araie H, Nakamura H, Toney J L, et al. Novel alkenone-producing strains of genus Isochrysis (Haptophyta) isolated from Canadian saline lakes show temperature sensitivity of alkenones and alkenoates[J]. Organic Geochemistry, 2018, 121: 89-103.

[39] Volkman J K, Eglinton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid[J]. Phtochemistry, 1980, 19: 2619-2622.

[40] Volkman J K, Barrett S M, Blackburn S I, et al. Alkenones in: Implication for studies of paleoclimate[J]. Geochimica et Cos­mochimica Acta, 1995, 59(3): 513-520.

[41] Marlowe I T, Green J C, Neal A C, et al. Long chain (-C37-C39) alkenones in the Prymnesiophycea. Distribution of alkenones and other lipids and their taxonomic significance[J]. British Phycological Journal, 1984, 19: 203-216.

[42] Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: a new tool for climatic assessment[J]. Nature, 1986, 320: 129-133.

[43] Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long-chain ketone compositons for palaeotemperature assessment[J]. Nature, 1987, 330: 367-369.

[44] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions[J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2303-2310.

[45] Lee K E, Lee S, Park Y, et al. Alkenone production in the East Sea/Japan Sea[J]. Continental Shelf Research, 2014, 74: 1-10.

[46] Harada N, Sato M, Sakamoto T. Freshwater impacts recorded in tetraunsaturated alkenones and alkenone sea surface temperatures from the Okhotsk Sea across millennial-scale cycles[J]. Paleoceanography, 2008, 23: PA3201.

[51] Volkman J K. Ecological and environmental factors affecting alkenone distributions in seawater and sediments[J]. Geochemistry Geophysics Geosystems, 2000, 1: 2000GC000061.

[53] Prahl F G, Pilakaln C H, Sparrow M A. Seasonal record for alkenones in sedimentary particles from the Gulf of Maine[J]. Deep-Sea Research Ⅰ, 2001, 48: 515-528.

[56] Filippova, A, Kienast M, Frank M, et al. Alkenone paleothermometry in the North Atlantic: A review and synthesis of surface sediment data and calibrations[J]. Geochemistry Geophysics Geosystems, 2016, 17: 1370-1382.

[57] Conte M H, Eglinton G, Madueira L A S. Long-chain alkenones and alkyl alkenoates as paleotemperature indicators: Their production, flux and early sediment diagenesis in the eastern North Atlantic[J]. Advances in Organic Geochemistry, 1992, 19: 287-298.

[58] Cabedo-Sanz P, Belt S T, Jennings A E, et al. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8 000 years: A multi-proxy evaluation[J]. Quaternary Science Reviews, 2016, 146: 99-115.

[59] Rosell-Melé A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high latitude locations[J]. Paleoceanography, 1998, 13(6): 694-703.

[60] Łącka M, Cao M, Rosell-Melé A, et al. Postglacial paleoceanography of the western Barents Sea: Implications for alkenone-based sea surface temperatures and primary productivity[J]. Quaternary Science Reviews, 2019, 224: 105973.

[61] Prahl F G, Wolfe G V, Sparrow M A. Physiological impacts on alkenone paleothermometry[J]. Paleoceanography, 2003, 18(2): 1025.

[63] Conte M H, Weber J C, King L L, et al. The alkenone temperature signal in western North Atlantic surface waters[J]. Geochimica et Cosmochimica Acta, 2001, 65(23): 4275-4287.

[64] Mao L, Piper D J W, Saint-Ange F, et al. Provenance of sediment in the Labrador Current: A record of hinterland glaciation over the past 125 ka[J]. Journal of Quaternary Science, 2014, 29(7): 650-660.

[65] Sicre M A, Bard E, Ezat U, et al. Alkenone distributions in the North Atlantic and Nordic sea surface waters[J]. Geochemistry Geophysics Geosystems, 2002, 3(2): 10.1029/2001GC000159.

[67] Leduc G, Schneider R, Kim J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry[J]. Quaternary Science Reviews, 2010, 29: 989-1004.

[68] Seki O, Kawamura K, Ikehara M, et al. Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs[J]. Organic Geochemistry, 2004, 35: 347-354.

[69] Sikes E L, Sicre M A. Relationship of the tetra- unsaturated C37alkenone to salinity and temperature to salinity and temperature: Implications for paleoproxy applications[J]. Geochemistry Geophysics Geosystems, 2002, 3(11): 1-11.

[70] Gould J, Kienast M, Dwod M, et al. An open- ocean assessment of alkenone δD as a paleo-salinity proxy [J]. Geochimica et Cosmochimica Acta, 2019, 246: 478-497.

[71] Weiss G M, Schouten S, Sinninghe Damsté J S, et al. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2019, 250: 34-48.

Progress in using the long-chain alkenones to reconstruct the Holocene climate changes in northwest Atlantic Ocean

WANG Dan, Rashid Harunur

(College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China)

long-chain alkenones; sea surface temperature; meltwater; alkenone %C37:4; northwest Atlantic Ocean

Dec. 28, 2020

P736.4

A

1000-3096(2022)1-0181-11

10.11759/hykx20201228005

2020-12-28;

2021-01-29

国家自然科学基金项目(41776064, 41976056)

[National Natural Science Foundation of China, Nos. 41776064; 41976056]

王丹(1996—), 女, 江苏盐城人, 硕士研究生, 从事古海洋学研究, 电话: 15061952053, E-mail: 943795544@qq.com; RASHID Harunur(1969—),通信作者, 男, 教授, 博导, 从事海洋地质、古海洋学、低温地球化学研究, E-mail: Harunurbhola@gmail.com

(本文编辑: 赵卫红)

猜你喜欢

北大西洋融水长链
我国科学家实现常压下二氧化碳加氢制备长链烯烃
近60年华北春季干旱特征及其与北大西洋海表温度的关系
长链非编码RNA APTR、HEIH、FAS-ASA1、FAM83H-AS1、DICER1-AS1、PR-lncRNA在肺癌中的表达
融水糯米柚种植栽培管理与技术探究
2016与1998年春季北大西洋海表温度异常的差异及成因
北大西洋海浪特征分析
北大西洋海表风速变化趋势
例举高中数学解题切入点的找寻
为什么芝士能够拉丝?
最佳饮料融水