轨道交通电气火灾监控系统报警分析与处置措施
2022-01-20韦寒苍姚明阳
韦寒苍,姚明阳
(1.广西柳州市轨道交通投资发展集团有限公司运营分公司,广西柳州,545001;2.柳州铁道职业技术学院,广西柳州,545616)
1 电气火灾监控系统概述
电气火灾监控系统由电气火灾监控主机、剩余电流式电气火灾监控探测器、数据传输总线及系统软件等组成。
剩余电流式电气火灾监控探测器通常设置在400V低压开关柜内各分回路馈线侧、大容量通风空调设备分回路馈线侧、照明配电箱总进线侧及EPS进线侧等,用以监视负载漏电情况。监控探测器将探测到的剩余电流经过数据传输总线(RS485CAN)上传到位于照明配电及控制室的监控主机;监控主机实现对其各种信号的处理、报警、控制、显示、统计、管理、通信等功能,并将数据信息、报警信息等通过继电器端子与FAS的输入模块连接,再通过FAS系统形成环网。
图1 电气火灾监控系统图
2 漏电故障检查
(1)漏电报警现象
沿线车站1和车站2曾出现FAS系统频繁报警的情况,FAS系统显示报警信号由位于照明配电及控制室内的电气火灾监控主机传来。经查阅电气火灾监控主机报警信息,是由于400V馈线柜上剩余电流式电气火灾监控探测器探测到照明总箱馈线回路存在较多剩余电流,且剩余电流值远超预设报警值500mA,从而触发监控探测器声光报警动作。监控探测器再将探测到的信号上传电气火灾监控主机和FAS主机。
(2)漏电检查
为查清漏电流来源,排除漏电监测系统质量或安装问题。现场对400V开关柜内照明总箱分开关(以下简称400V照明总箱分开关)和照明总箱负载开关进行检测。使用钳形万用表圈住火线、零线,测量电流情况,测量数据如表1所示。
表1
由表1数据可知:断开400V开关柜照明总箱分开关和照明电箱负载开关前,其漏电流值较大,均超过了报警值500mA。断开400V开关柜照明总箱分开关和照明电箱负载开关后,其漏电流值则很小,几乎为零。且400V开关柜照明总箱分开关和照明电箱负载开关下的漏电流值几乎相同。故可以说明漏电流是由照明电箱负载开关所带设备或线路产生的,而非漏电监测系统质量或安装问题。
3 剩余电流产生原因分析
针对上述案例,下面从剩余式电流互感器工作的原理,深入剖析剩余电流产生的原因。通常,当运行中的线路发生电击事故、设备漏电、接地故障现象或者其他三相对地电流不平衡的情况时,会产生剩余电流。剩余式电流互感器的工作原理正是通过检测运行线路中LA、LB、LC、N电流的矢量和,以此作为依据,预判电气火灾隐患情况,从而提醒维护人员及时采取措施,防止电气火灾的发生。其原理如图2所示:负载情况下,各相线电流由电源侧流出,经过电流互感器的测量,再流经负载,最后穿过电流互感器由零线全部返回电源侧,从而形成回路。
图2 剩余式电流互感器原理图
(1)正常情况下,各相电流平衡,通过互感器一次侧电流相量和等于零。
由基尔霍夫电流定律可知:
由于电缆自身存在泄露电流,所以线路剩余电流为
参考《全国民用建筑工程设计技术措施》及实测数据可知,电缆泄露电流通常很小,且远远小于预设阀值,未达到系统报警条件。
(2)故障情况下,如线路电缆绝缘受损时,造成接地短路,若短路电流为ID,则线路剩余电流为:
通常情况下ID较大,当I泄+ID大于预设阀值,则系统报警。
根据剩余式电流互感器的工作原理可知,出现剩余电流继而触发报警的原因除了线路本身存在故障外,还有可能是施工不当造成的。下面通过原理图,并结合实际案例,详细分析产生剩余电流而触发报警的真实原因,以便有针对性的采取措施。
(1)如图3第一种情况,属于N线与PE线短路。当N线与PE线在M点碰接时,造成零线重复接地,部分零线电流被PE线分流,无法全部经互感器返回,由此将产生剩余电流。
(2)如图3第二种情况,属于零线漏电。当零线绝缘劣化、接头包裹不严时,导致裸线碰地、碰外壳,部分零线电流直接流入大地,从而产生剩余电流。
(3)如图3第三种情况,属于施工中将N线与PE线混用(或搭错母排),错误将PE线当零线接入,人为造成漏电(如图3中R负载情形),也会产生剩余电流。
图3 配电系统中不同情况下剩余电流原理图
(4)不同配电箱零线混接产生的剩余电流
①不同配电箱出线的零线跨区混用,如图4中Ra借用B区的N线,而未经A区N线和互感器返回(正常接线应为Ra虚线部分),由此产生剩余电流。
②不同配电箱的出线零线并接,如图4中H点与G点短接,或通过其他途径间接搭接,导致A、B两区的三相电流均不平衡,由此产生剩余电流。
图4 不同配电箱零线混接剩余电流原理图
验证方法:
将穿过互感器电缆上端开关断开,如果此时漏电流已经消除,确认负载处存在问题;如漏电流仍然存在,将穿过互感器的“N”线断开,此时如漏电流消失,则可确认是“N”线被混接;
(5)零线方向穿反产生剩余电流:
如图5所示。在剩余电流互感器中,零线方向穿反,线路的电流矢量和应为2倍的三相电流矢量和,由此产生剩余电流。
图5 互感器零线反穿时剩余电流原理图
4 减少剩余电流的措施
通过上述分析,出现剩余电流的根本原因是从电源侧流出的电流没有按照既定的回路返回,具体表现为线路破损导致的漏电、N线和PE线混用或短路、不同配电箱零线混用等配电系统多点接地问题,以及互感器穿线错误等施工安装接线的问题。因此,针对上述情况,提出以下措施限制和降低车站配电系统的剩余电流:
(1)剩余电流互感器安装时,严格区分N线和PE线,N线为蓝色,PE线为黄色,不随意搞混和乱接。
(2)不得将 N线作为PE线使用,不得重复接地。
(3) N线必须穿入电气火灾监控系统的电流互感器,且接线方向应与相线一致,不得反接。
(4)PE线严禁穿过电气火灾监控系统剩余电流互感器。
(5)应严格控制电缆头的制作工艺,采用绝缘良好、泄露电流小的导线连接方式,并进行检测。
(6)配电系统包括设备、管线等安装到位后,未接通电源前,应对回路绝缘性能进行测试,并核实PE、N线的接线。
5 结论
电气火灾监控系统使电气火灾预防由被动变为主动,极大提高了运营维护效率。为充分发挥电气火灾监控系统在城市轨道交通配电系统中的应用效果,结合案例情况,总结以下几点注意事项:一是设施设备维护人员应熟练电气火灾监控系统原理和剩余式电流工作原理;二是安装人员需要正确安装电气火灾监控系统;三是线路施工人员需要保证线路施工的工艺质量。