APP下载

2010—2020年黄河下游河南典型灌区浅层地下水中砷和氟的演化特征及变化机制

2022-01-09任宇曹文庚潘登王帅李泽岩李谨丞

岩矿测试 2021年6期
关键词:黄河离子变化

任宇, 曹文庚*, 潘登, 王帅, 李泽岩, 李谨丞

(1.中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061;2.河北沧州平原区地下水与地面沉降国家野外科学观测研究站, 河北 石家庄 050061;3.河南省自然资源监测院, 河南 郑州 450016;4.中国地质大学(北京), 北京 100083)

长期饮用高砷、高氟水会引发人体慢性中毒,对皮肤与神经系统造成损害,导致神经性中毒、皮肤病、贫血等多种疾病,严重者会导致癌症,威胁人体健康[1-4]。国际癌症研究机构(IARC)已将As列为一类致癌物质[5-6]。世界卫生组织(WHO)将饮用水中As与F离子允许上限分别规定为10μg/L和1.5mg/L,中国饮用水标准中也将两者浓度上限分别规定为10μg/L和1mg/L。因此,结合饮用水标准与地下水质量标准,通常将As浓度>10μg/L和F浓度>1mg/L作为高砷与高氟的界限[7]。As、F浓度过高的地下水广泛分布于孟加拉国、印度、美国等全球各地[5,8-9]。孟加拉国与印度饮用水中As浓度最高超过2mg/L,美国肯塔基州部分地下水F浓度超过50mg/L[10-11]。在中国高砷与高氟地下水分布于大同盆地、河套平原、松嫩平原等多地[12-14]。据统计,河套盆地与大同盆地地下水中As浓度最高超过1mg/L,F离子浓度超过5mg/L,松嫩平原地下水As浓度最高也超过300μg/L[15-17],这些地区地下水中As与F浓度都远超饮用水限值。地下水的As与F超标问题已成为影响地下水利用的重要因素,所以针对地下水中As与F的来源与演化引起了学者们的广泛关注和研究。

张怀胜等[18]对河北衡水高氟水研究表明,水中氟离子主要受萤石溶解与离子交换作用的影响,而天津武清高氟地下水中具有低钠高钙的水化学特征[19]。黄冠星等[20]研究表明珠江三角洲高砷地下水来源受到原生与人为灌溉的共同影响。地下水中氟离子主要来源于含氟原生沉积地层,并通过蒸发浓缩等水化学作用其浓度升高[21]。Guo等[22]和曹文庚等[23]发现河套平原地下水受到黄河改道的影响,高砷主要来源于有机物作用下铁氧化物的还原溶解作用。而王喜宽等[24]和赵锁志等[25]分析了河套地区地下水中高氟是气候因素、地质因素和人类活动共同影响导致。韩双宝等[26]认为黄河流域中As、F、碘等原生组分超标是部分地区地下水饮水安全的主要威胁,且在河南新乡地区零星分布着高砷地下水。通过前人研究可以看出,地下水中As、F等离子浓度升高是受到当地气象条件、水文地质条件与人为活动等多方面因素共同影响[27-29]。在很多地区,地下水会同时出现高砷与高氟并存的结果,但两者赋存机制之间的关系仍需进一步研究。

黄河下游典型灌区(河南)为河南重要的农业产地,该地区的农业灌溉重要水源之一为浅层地下水,同时地下水还用于当地养殖与村民家庭用水。前期已有研究发现,该地区浅层地下水整体水质较差,虽然随着地下水位的下降,浅层地下水逐渐发生淡化[30-31],但是As、F等离子超标问题较为严重,如新乡市延津县氟水受害人口占全县总人口的33.25%,而在封丘县高砷村暴露人口中病人以皮肤色素脱失伴随色素沉着。这表明高砷、高氟地下水已经对当地用水安全和人体健康造成潜在风险[32-33]。由于黄河下游典型灌区(河南)同时受到山前冲积与黄河冲积双重影响,且该地区人类活动影响较多,地下水中As、F在该地区的分布及演化特征会受到多重环境的影响,As、F两种元素在该地区的富集机制仍无明确结论。

本文基于2010年与2020年对黄河下游典型灌区(河南)进行的两次地下水质调查,分析了2020年地下水中As、F的整体分布情况,通过两次水质数据分析工作区浅层地下水中As、F离子整体浓度与空间分布上的变化情况,揭示研究区内地下水中As、F离子在近十年间的演化特征,探究近十年间导致As、F变化过程的形成机理。研究成果拟为该地区后续的地下水合理利用提供科学依据。

1 研究区概况

黄河下游典型灌区(河南)位于河南省东部,行政区包括新乡市、鹤壁市、安阳市与濮阳市。该地区西靠太行山,南边以黄河作为边界,北侧和东侧则分别与河北与鲁西平原相连。地区地势总体由西南向东北倾斜。黄河下游典型灌区(河南)为历史上黄河决口、改道最频繁的地区之一,地表仍可见河道变迁的历史遗迹,整体普遍分布为平地与洼地,黄河故道上有沙丘、沙地地貌分布。

研究区属暖温带半湿润、半干旱气候,多年平均气温介于13~15℃之间,降水量600~800mm,且多集中于夏季的七月份至九月份。研究区总的气候特征为冬季寒冷降雪偏少,春季干旱风沙较多,夏热雨水多且丰沛,秋季日照时间较长。研究区内河流以黄河干流及其支流沁河、天然文岩渠、金堤河、洛河、伊河、涧河、廛河、金水河为主。该地区地下水主要赋存于第四系多层交互的砂与粉土的孔隙含水层中。地下水系统在该地区可划分为山前倾斜平原含水层系统与黄河冲积平原含水层系统。

黄河下游典型灌区(河南)总体径流方向与地势变化基本一致,由西南向东北方向,由西部山前的补给源区向东部径流,由南部黄河补给源区向东北方向径流。该灌区(河南)自20世纪80年代以来,由于需水量快速增加,而补给量相对减少,工农业大量开采利用地下水,使得人工开采地下水成为主要的排泄方式,向下游区的径流排泄位居其次。

工作区2010年调查数据表明,高砷地下水主要分布在新乡北部与中西部大部分地区,濮阳市也偶有高砷地下水出现。As平均浓度为9.9μg/L,As最大浓度地下水位置位于新乡市延津县胙城乡,浓度达到190μg/L。高氟地下水主要分布在黄河沿线和濮阳市,最大浓度为4.94mg/L,位于濮阳市濮阳县八公桥镇。

2 实验部分

在2010年项目组对研究区内地下水进行采样,共计327组,并于2020年10~11月在原水井位置327组上进行复采并添加3组共计330组。后续为了对比演化特征和形成机制,只选取两期对应的327组样品进行对比分析。本次研究中所有样品均来自于机民井与压水井,井深均不超过100米,从含水层划分上均定义为浅层含水层地下水。

在地下水样品测试中,采用加5%的重复样品进行质量控制,所有重复样品的误差小于5%。

3 结果与讨论

3.1 2010—2020年研究区地下水化学特征

a—阳离子类型; b—阴离子类型。图1 2020年研究区水化学阴阳离子类型分布统计Fig.1 Distribution statistics of water chemical anion and anion types in the study area in 2020 (a—cationic type; b—anion type)

表1 2010年和2020年研究区主要离子浓度分布Table 1 Main ions concentration distribution of the study area in 2010 and 2020

3.2 2010—2020年地下水砷和氟分布特征

为了展示As与F元素在研究区内空间的分布特征及两种元素在2010—2020期间整体浓度与空间变化,依据地下水质量标准及饮用水标准对两种元素浓度的划分,利用Arcgis将地下水中As与F元素按照不同浓度标准(As:≤10μg/L,10~50μg/L,>50μg/L;F:≤1mg/L,1~2mg/L,>2mg/L)投影至研究区范围内。

2020年研究区As浓度分布介于0~128μg/L之间,平均浓度为10.5μg/L。根据As在研究区内的分布(图2a)可以看出,研究区内地下水中高砷点(浓度大于10μg/L)的分布呈现明显的空间差异性。As浓度高于10μg/L的地下水普遍分布于新乡地区的延津县、原阳县、封丘县,新乡与安阳北部滑县交界处地下水As浓度超过50μg/L,个别高砷点位于濮阳市北部濮阳县、范县等地。取样结果中最大As浓度点位于新乡市延津县胙城乡,该点位与2010年最高值点位一致,这表明该处地下水长期稳定地保持高砷状态。在新乡大部分中部平原地区,黄河的多次改道在该地区形成了砂与土互层的沉积环境。新乡北部与滑县交界处于冲洪积洼地地带,地下水在此区域径流不畅。该地区为山前冲洪积扇裙的前缘部位,砂层的厚度逐渐变薄,黏土的厚度开始增加,总体上同样呈现“下粗上细”的砂、泥互层特征[34]。研究表明在砂土互层与弱径流条件下,地下水会保持强还原环境,随着土砂比越高,地下水还原性越强,因此有利于高砷地下水的形成[35]。

图2 2020年(a)砷与(b)氟元素空间分布图Fig.2 Spatial distribution of (a) arsenic and (b) fluorine in 2020

而F元素在研究区的空间分布(图2b)表明高氟地下水(浓度大于1mg/L)主要分布于新乡市东南部的封丘县与长垣县的黄河沿线地区,以及濮阳市的濮阳县、范县和台前县等黄河冲积平原。研究区整体F离子浓度介于0.06~6mg/L,平均浓度为0.88mg/L。F离子最高浓度点位于新乡市长垣县芦岗镇,地处黄河沿线附近。

Gibbs[36]根据全球不同类型地表水中TDS与不同离子之间毫克当量比的分布,判断地表水的来源。而学者们发现同样可利用Gibbs图识别地下水化学的主要来源[37-38]。通过2020年不同浓度As与F的数据点在Gibbs图中的分布(图3)可以明显看出,黄河典型灌区(河南)农业区地下水主要受到岩石风化作用与蒸发浓缩作用的共同影响。高砷与高氟地下水的分布更靠近岩石风化区,表明该地区中地下水中的高砷(图3a)与高氟(图3b)是受到原生地层中矿物风化溶解作用所导致。已有研究表明黄土中具有大量云母、角闪石等含氟矿物,因此黄河影响区内黄土等含氟土壤是高氟地下水的直接来源[7,21]。在灌溉、降雨等作用的影响下,土壤矿物中F通过淋滤、溶解等作用进入地下水中。

图3 2020年Gibbs图中不同浓度(a)砷与(b)氟分布Fig.3 Distribution of (a) arsenic and (b) fluorine in different concentrations in Gibbs diagram in 2020

3.3 2010—2020年砷和氟浓度变化特征

3.3.1研究区砷浓度变化特征

通过As、F元素在研究区近十年浓度的变化,可以反映出该地区地下水环境在此阶段的演化。为了消除测试中检出限对区域内As、F元素演化的影响,将As、F元素分别在0±1μg/L与0±0.05mg/L之间浓度变化视为未发生改变。对As元素浓度两期的数据进行对比,并通过研究区各点浓度在近十年的改变情况(图4a)可以看出,As浓度升高点与2020年高砷点具有良好的对应性,除在新乡冲积平原西南至东北方向高砷区范围浅层地下水中As浓度有所减少,个别点As浓度减少达到50μg/L以上,其余高砷地下水中在近十年都出现不同程度升高。而As浓度减少的范围则集中在平原的低砷区中,安阳市与濮阳市低砷区整体浓度以保持稳定和略有降低为主,新乡市低砷区有所减小。以As浓度大于10μg/L作为分界线,发现研究区内As超标率从23.9%升高至26.1%,说明研究区高砷分布范围有所扩大。近十年水样点中As浓度增加的占31.8%,As浓度减少的水样占总数36.7%。这表明在黄河下游典型灌区(河南)地下水中As元素浓度受到不同环境因素影响呈现两种变化趋势,高砷区As的浓度除新乡北部地区外逐渐增加,低砷区As的浓度变化不大或逐渐减少。

3.3.2研究区氟浓度变化特征

近十年间氟元素在研究区内浓度整体降低(图4b),大多数水样浓度降低幅度在 0.05~1mg/L之间,这表明研究区地下水环境不利于氟元素的富集。但是在新乡南部黄河沿线附近与濮阳市的高氟区中,浅层地下水中的F元素浓度得到进一步增加,F离子浓度范围从2010年的0.13~4.94mg/L变化至2020年的0~6mg/L,这说明高氟区的地下水环境对F元素的进一步富集起到促进作用。而2010—2020年期间高氟水占比从25.69%变化至26.06%,地下水F浓度减少的占总数60.2%,F浓度增加的占总数32.1%。高氟地下水比例变化不大,整个地区F离子浓度有下降的趋势。

变化值大于零代表浓度增加,变化值小于零代表浓度降低。图4 2010—2020年(a)砷与(b)氟浓度变化图Fig.4 Arsenic and fluorine concentration variation in 2010—2020 (a—arsenic, b—fluorine; A change value greater than zero represents an increase in concentration, and a change value less than zero represents a decrease)

4 2010—2020年砷和氟演化过程机制

4.1 近十年地下水中砷演化机制

影响As离子浓度变化的因素较多,氧化还原环境变化、水文地球化学作用等因素均会导致地下水中As元素向不同方向发生改变[39]。利用地下水中不同类型离子比可以反映地下水环境的变化情况。

4.1.1氧化还原条件影响作用

图5 2010—2020年砷元素变化与各离子比变化之间关系Fig.5 Relationship between the change of arsenic and the change of ion ratios in 2010—2020

4.1.2水文地球化学影响作用

Na+/Ca2+可以指示地下水中阳离子的主要类型,从图5d中可以看出As在不同水化学类型地下水中同样存在差异。Na+/Ca2+与As之间存在负相关关系。随着地下水中As浓度的增加,Na+/Ca2+比值快速降低。表明高砷地下水中的水文地球化学作用导致Na+的相对含量减少,Ca2+的相对含量增加。Na+/Cl-比值可以指示水盐机制,当该比值接近于1∶1时,表明地下水钠盐主要源于岩盐溶解[43]。在As-Na+/Cl-图(图5e)中可以看出,地下水中大部分点位于y=1线上,这说明地下水中还存在硅酸盐等矿物溶解作用。而随着地下水中As浓度增加,Na+/Cl-比值也在迅速降低,这说明地下水中Na+会通过水岩作用浓度发生降低。

4.2 2010—2020年地下水中氟演化机制

4.2.1阳离子类型影响作用

根据2010年与2020年水质中F与Na+/Ca2+之间关系(图6a)看出,Na+/Ca2+与F之间呈现正相关关系。在F浓度较高的地区,Na+/Ca2+比值也较高,表明高氟地下水地区地下水径流条件较好,阳离子交换作用较弱。结合3.2节分析表明了高砷点分布于黄河沿线,由于阳离子含量受到黄河水影响,使得F离子浓度得到增加[45]。而进一步判断F在2010—2020之间变化所受影响,则通过2020年与2010年地下水F浓度之间差值与Ca差值之间关系(图6b)能够发现两者差值之间具有良好的负相关关系。随着地下水中F离子逐渐升高,所处地下水环境中Ca浓度随之减少(第四象限),而F浓度改善的地下水中Ca浓度出现增加(第二象限)。两者变化值之间良好的相关关系,表明地下水中钙离子浓度是影响F离子变化的重要因素。

图6 2010年和2020年氟离子变化与不同离子比变化之间关系Fig.6 Relationship between the change of fluorine ion and the change of different ion ratios in 2010 and 2020

萤石(CaF2)作为一种同时含有钙与氟元素的矿物,在天然条件下的水体中会同时存在着以下两种反应[46]:

(1)

Ca2++2F-↔CaF2

(2)

通过上述反应式可以看出,水文地球化学作用显著影响F离子的分布。低钙的碱性重碳酸盐型水中有利于含氟矿物产生溶解作用。随着地下水中pH值升高,重碳酸根离子浓度增加,反应式(1)向生成碳酸钙的方向进行移动,使得Ca2+浓度降低,这就会引起反应式(2)中的反应向萤石溶解的方向进行移动,使得F离子浓度得到增加[47-48]。所以,研究区中高氟地下水同样主要赋存于低钙的环境中[45,49]。F离子主要来源于含氟矿物,但在黄河冲积平原内沉积物中钙质矿物较多,受到地下水中钙离子浓度较高的影响,使得F离子在萤石溶解平衡的反应中其浓度显著减小,且随着时间增加,钙离子浓度逐渐增加,F离子浓度减少。而在黄河沿线附近,地下水阳离子受到黄河地表水的影响,以钠离子为主,造成地下水F离子浓度显著增加。

4.2.2氟与砷之间演化关系

根据研究区内As-F之间的关系可以看出(图6c),两者分布具有负相关关系,高砷水环境不利于F离子的富集,高氟水环境中也不利于As的赋存。研究表明河套平原中干旱-半干旱地区的气候等因素使得As、F两者之间具有正相关关系[50],说明在本研究区中As与F富集机制与其有所不同。结合相关性关系图和As、F分布演化机制,在径流条件较差的环境中,As在锰氧化物等固相上通过还原溶解释放进入地下水中,但地下水中阳离子交换作用较强,地下水中钙离子的升高使得F离子无法存在于其中,因此造成在As浓度增加的地区F离子浓度出现降低。同样,高氟地区普遍分布于黄河沿线,受到黄河补给影响作用较大,径流条件较好,此时As容易被吸附于固相上,造成在水中浓度较低。而As-F近十年间变化之间相关关系中(图6d),在F浓度增加地区中地下水As浓度降低(第四象限)。由上述关系可知,F增加地区Ca2+减少,表明该地区中地下水径流较好,该环境中As逐渐吸附于固相,在液相中浓度降低。而在F浓度减少的地区,As浓度变化无明显规律,表明在F减少地区As与F之间演化关系还受其他因素影响。

5 结论

本文在黄河下游灌区(河南)取地下水样品327组,发现2020年研究区浅层地下水中钠离子与重碳酸根离子为主要阴阳离子。浅层地下水平均TDS超过1g/L,属于微咸水。高砷区主要分布于太行山山前洼地与黄河冲积平原内,而高氟区主要分布于新乡南部与濮阳等黄河沿线附近。通过分析研究区2010—2020年As、F离子浓度的变化可以看出,As与F增加区与高砷、高氟区具有良好的对应关系。区域内As浓度变化出现两种趋势,近十年间As浓度增加数量占总数31.8%,As浓度减少数量占36.7%。在As浓度增加区(增加超过1μg/L),除在新乡冲积平原西南至东北方向高砷区浅层地下水中As浓度减少,其余高砷地下水中在近十年间都出现升高。F离子升高区(增加超过0.05mg/L)则主要分布在新乡与濮阳沿黄河一带,研究区中F离子浓度减少数量占总数60.2%,F离子浓度增加数量占32.1%,整体出现向好趋势。

高砷水主要赋存在还原性较强的环境中。同时高砷地下水环境由于径流不畅,使得水中Na+与含水层矿物中Ca2+之间发生较强的阳离子交换作用,高砷水中Na+浓度降低,Ca2+浓度升高。而2010—2020年As浓度的变化受到氧化还原条件的影响较大,氨氮浓度增加的地区中还原性增强,可溶性Mn浓度变高,同时水中As浓度在近十年间出现增长,表明锰氧化物等在该条件下释放As,而在氨氮降低地区氧化性增加,As与Mn浓度都出现减少,表明锰氧化物在该条件下会吸附As。F离子分布与Ca2+呈反比,高氟地区地下水中Ca2+浓度明显低于其余地区。而近十年间氟离子变化与Ca2+的变化同样呈明显的反向关系。在地下水中Ca2+升高地区,F离子浓度受到萤石矿物溶解平衡影响其浓度降低,而在黄河沿线地下水钠离子浓度升高地区,F离子浓度升高。地下水中As与F受到阳离子类型影响,使得两者之间分布具有负相关性。在地下水中氟增加地区,钙离子浓度普遍降低,表明此时径流条件较好,阳离子交换作用减弱,造成氟增加的演化过程中As浓度出现降低。本研究阐明了黄河下游灌区(河南)浅层地下水中As和F在2020年的分布特征,揭示了2010—2020近十年As和F在研究区中的演化情况与变化机制,该成果将为研究区中浅层地下水的合理开发利用和健康风险评价提供依据。

致谢:感谢中国地质科学院水文地质环境地质研究所和河南自然资源监测院有关同志在样品野外取样和分析测试中提供的帮助。

猜你喜欢

黄河离子变化
多彩黄河
黄河宁,天下平
从9到3的变化
『黄河』
这五年的变化
在细节处生出智慧之花
小议离子的检验与共存
钢渣对亚铁离子和硫离子的吸附-解吸特性
鸟的变化系列
铝离子电池未来展望