华南下扬子区早寒武世幕府山组沉积环境:来自于全岩地球化学的启示
2021-12-30许明陈建文袁勇张银国梁杰李慧君王建强吴淑玉
许明,陈建文,袁勇,张银国,梁杰,李慧君,王建强,吴淑玉
1. 江苏工程职业技术学院,南通 226007
2. 中国地质调查局青岛海洋地质研究所,青岛 266237
3. 海洋国家试点实验室海洋矿产资源评价与探测技术功能实验室,青岛 266237
4. 山东科技大学,青岛 266590
5. 河海大学,南京 210098
扬子地块古生界油气勘探近年来获得了广泛关注[1],且在中、上扬子地区取得了油气资源的重大突破[1-3],目前研究表明在下扬子地块中的南黄海盆地也具有同样的勘探潜力[4-9]。前人对中、上扬子地块下寒武统牛蹄塘组泥页岩进行了大量的研究工作,包括沉积环境、古海洋条件及有机物生产力等[1,3,10-11]。然而在可以区域对比的下扬子地块中,与之对应的下寒武统幕府山组还未开展详细的沉积地球化学分析工作。
早寒武世在地球地质演化过程中具有至关重要的意义。从埃迪卡拉纪至寒武纪早期,地球岩石圈、生物圈、气候及超大陆演化都发生着剧变[12-20],而扬子地块在这一时期的演化过程尚有大量问题没有解决,例如早寒武世的水体环境、水体生产力的成因以及早古生代华夏地块与扬子地块之间是否存在大洋等问题[21-26]。
陆源碎屑岩能够为物源提供信息[27-34],细粒沉积物的地球化学成分能够判断源岩的风化程度、沉积循环、物源情况、古环境以及形成的构造背景,这是由于在沉积物转移并沉积下来的过程中源岩的部分性质被保留下来[35-42]。一系列微量元素如稀土元素、Y、Zr、Hf、Nb等,由于其不活动的性质并且受后期成岩和变质作用影响较小,适合用于沉积物源分析。
2017年,下扬子陆域江苏盱眙地区实施了全取心井—官地1井(图1)。本研究依托官地1井,针对幕府山组泥岩开展沉积地球化学分析,利用沉积地球化学指标推测下扬子地块早寒武世的沉积环境及海洋水体环境,并分析幕府山组泥岩的陆源碎屑来源,为扬子区早寒武世环境空间分布及演化提供对比基础。
图1 扬子地块早寒武世古地理分布图[2] (a)以及官地1井位置图及周边地质图(b)Fig.1 Paleogeographic map of Yangtze Block during Early Cambrian[2] (a), location and regional geological map of Guandi-1 well (b)
1 区域地质背景
在埃迪卡拉纪至寒武纪转换时期,扬子地块演化进入被动大陆边缘盆地期,广泛发育碳酸盐岩台地沉积(图1),并在边缘发育有一系列斜坡带[18,42-43];早寒武世时期,扬子区大部分被碳酸盐岩台地所占据,并被“牛蹄塘事件”广泛进积的陆架泥岩沉积所披覆[44-46]。早寒武世,扬子地台可大致划分为3种沉积环境,即陆架、局限盆地、深海盆地;该时期扬子地块处于两坳夹一隆的构造格局,南北两侧被深水沉积所占据,而中间则发育碳酸盐岩沉积[42]。
下寒武统在下扬子江苏北部地区被命名为黄栗树组,在安徽巢湖地区为冷泉王组和半汤组,芜湖地区为黄柏岭组,在下扬子南部地区为荷塘组,本研究采用江苏南京地区定名,即幕府山组[47]。官地1井揭示约440 m厚的幕府山组,为黑色-灰黑色炭质-钙质泥岩、灰色泥质灰岩,并且较少发育化石,其下为灯影组白云岩被不整合所覆盖,二者之间发育约23 m风化壳(图2)。
2 样品与方法
官地1井钻井实施单位为青岛海洋地质研究所和江苏长江地质勘查院,取心率达94.86%,揭示了厚度达440 m的下寒武统幕府山组泥岩,官地1井岩性特征及典型照片如图2所示,共采集24件幕府山组炭质/钙质泥岩样品(采样位置如图2)用于主、微量元素分析。实验测试在国家地质实验测试中心完成,其中总有机碳(TOC)分析利用CS-200碳-硫分析仪,主、微量元素分析利用PW4400 X射线荧光质谱仪及PE300D ICP-MASS。在元素测试分析之前,全岩样品被碾碎至1~2 cm小样,并在蒸馏水中超声清洗去除风化表面;清洗后的样品在105 ℃下烘干并粉碎至200目;分析误差<5%。
3 结果
3.1 主量元素
官地1井幕府山组主要元素含量见图3a,其中SiO2含量为57.6%~82.74%,Al2O3为0.98%~10.09%,K2O为0.40%~3.60%。Na2O含量极低,仅在幕府山组顶底具有相对较高的含量,其他大部分样品含量仅有0.01%。根据泥岩样品的主量元素特征,幕府山组岩石组成介于碳酸盐岩与陆源碎屑泥岩之间,样品中CaO含量及MgO含量均较高,分别为1.99%~16.57%和0.93%~5.53%。由于CaO的强烈富集,下寒武统幕府山组样品中大多数主量元素相对于平均大陆地壳的元素组成呈亏损特征。
图3 部分主量元素与微量元素含量特征Fig.3 Contents of some major elements and trace elements
AL2O3与K2O之间呈良好的正相关性(r=0.95,n=24),而Al2O3与SiO2呈弱正相关(r=0.59,n=24),AL2O3与K2O的正相关性表明这套泥岩的地化成分受控于黏土矿物[39,48-49]。
3.2 微量元素
大离子亲石元素,如Sr、Rb、Ba在绝大多数样品中均有明显富集(图3b),除了幕府山组顶部和底部,其他泥岩样品中Cu和Cs大离子亲石元素均呈亏损状态。大多数大离子亲石元素(Rb、Cs、Cu、Ba、Pb)与K2O及AL2O3的含量展现出明显的正相关性,表明这些元素的富集与含钾黏土矿物相关。而Sr元素与K2O及Al2O3之间缺乏相关性则表明其受到陆源物质黏土矿物的影响相对较小。
高场强元素除了U元素之外,其他元素均呈现出明显的亏损状态,而U元素具有强烈的富集。总体上高场强元素相较于平均大陆上地壳组成(UCC)呈亏损状态,并且U元素与K2O及Al2O3之间没有明确的相关性(图4)[50-51],表明U元素并未明显受到陆源物质的影响。此外样品中过渡元素如Ni、Sc、Co相比于平均大陆上地壳组成明显偏低,仅有V元素相对富集(图5)。
图5 幕府山组泥岩样品典型微量元素相对平均大陆上地壳组成的富集情况Fig.5 Enrichment of typical trace elements compared to UCC
总的来看,官地1井幕府山组泥岩中大多数微量元素受控于黏土矿物(与K2O及Al2O3相关性较高,如图4),代表它们具有一定的陆源亲缘。而一系列强富集元素如U、V、Sr与外来碎屑物质Al2O3及K2O不具备相关性(图4),表明这些元素能够真实反映沉积环境情况[50-51]。
图4 幕府山组泥岩样品中微量元素与Al2O3相关性分析Fig.4 Correlation analysis between trace elements and Al2O3 in the Mufushan mudstones
3.3 稀土元素
幕府山组泥岩稀土元素(REE,包括Y元素)特征见于图6。官地1井中总REE含量为14.81~116.40 μg/g。经球粒陨石标准化后,所有的样品均展示出明显的轻稀土元素相对于重稀土元素富集,并且具有明显的Eu负异常(0.37~0.82),δEu(Eu/Eu*)比值被定义为2EuN/((Sm)N+ (Gd)N),其中N代表球粒陨石标准化[52]。轻稀土元素与重稀土元素比值(LREEs/HREEs)为4.1%~19.15,而(La/Yb)N比值为3.88%~19.51。相对较高的(La/Yb)N比表明球粒陨石标准化下轻稀土与重稀土强烈的分馏。
图6 幕府山组泥岩样品稀土元素富集特征(球粒陨石标准化)Fig.6 Enrichment of REE in the Mufushan mudstones (Chondrite normalization)
幕府山组泥岩样品中REE含量与样品中K2O及Al2O3具有明显的相关性,这种相关性表明稀土元素主要赋存于黏土矿物中,因此,可以用于进一步的物源分析。
4 讨论
4.1 来自陆源碎屑物质的影响
沉积物中微量元素的富集受到碎屑物质和原生物质的影响,仅受到碎屑物质影响的微量元素能够用来分析原岩及风化情况。一系列Sc、Th及Zr等能够用来指示碎屑物质的成分。此外,幕府山组泥岩中Al2O3与Sc、Th和Zr有着强烈的相关性(r=0.98,0.92,0.91;n=24),由于Sc、Th、Zr具有明确的陆源碎屑来源,因此,样品中的Al含量基本都是陆源碎屑来源而非其他富Al 来源[2]。
根据元素的相关性分析(图4),可以得出Rb、Nb、Cs与Al具有明显的正相关关系,表明这一系列元素与陆源碎屑物质具有亲缘性。此外,P、V元素与Al含量有中等的相关性,而Ca含量与Al元素含量具有轻微的负相关关系。而一系列元素如Mn,Co,Ni,Cu,Zr,Sr,Ba,Pb与陆源来源指标Al没有相关性,这些元素可以用来指示古环境。
在现代海水中,球粒陨石标准化结果中具有明显的Ce负异常以及总REE含量偏低的特征[53]。在本研究中,幕府山组泥岩展现出微弱的Ce负异常,仅有幕府山组底部两个样品展现出正异常,表明样品中REE的聚集并非受到海水原因的影响(图6)。此外,前人的研究中得出Eu的正异常能够指示热液流体来源[50-51],而在本研究中,幕府山组泥岩展现出明显的Eu负异常,表明幕府山组形成并未受到热液流体的影响。
官地1井幕府山组泥岩中轻稀土相对重稀土富集,伴随着轻微Ce负异常和明显的Eu负异常,陆源黏土组分组成了泥岩的主要部分。幕府山组泥岩中总REE含量与陆源指示元素Al,Sc,Zr,Th有一定的正相关性(r=0.59,0.58,0.75,0.74),其中LREE与总REE相关性较好,HREE与总REE的相关性相对较低。总体来看,尽管幕府山组Ca含量相对较高,但是泥岩样品中的稀土元素仍然主体受到陆源物质的影响。
4.2 风化作用及沉积循环
根据沉积岩石的地球化学特征,能够判断源区风化的强度[28-29,37]。风化强度一般能够用化学蚀变指数来判断(CIA = molar [Al2O3/(Al2O3+ CaO* +Na2O + K2O)]×100[28]);化学风化能够强烈影响沉积物的矿物学及化学成分,将可溶性离子淋滤掉。CIA指数中CaO*代表着来源于硅酸盐中的CaO,但目前没有直接方法获取CaO在硅酸盐和非硅酸盐中的分布,因此,本研究中CaO*的含量参考Johnsson的方法[48]。总体上,未受风化影响的火成岩CIA值接近50,而强烈风化的黏土矿物如高岭土伊利石等CIA指数接近100[28]。官地1井幕府山组泥岩样品中CIA指数在64.97与80.50的区间范围内,表明幕府山组源区经历了弱-中等强度的风化(图7)。
源区的风化程度还可以用Al2O3–(CaO*+Na2O)–K2O (A-CN-K)三角图解来分析[54],在A-CNK图解中,由于样品极度缺乏Na2O,所有的幕府山组泥岩样品均投入到A-K线附近。结论与CIA指数类似,幕府山组泥岩样品受到轻微至中等强度风化,线性风化趋势表明物源区相对稳定[37,55](图7)。此外,在A-CN-K图解中,样品均落入于A-K线上,该表现与官地1井中样品强烈亏损Na2O相关,可能代表了风化过程中某种特殊的化学变化,导致Na元素强烈流失。
在Th/Sc-Zr/Sc图解中,能够识别样品的成分成熟度和分选程度[48-49,56]。幕府山组泥岩的Th/Sc比值为0.47~1.59,而Zr/Sc为4.34~16.60,表明幕府山组样品来源于中-酸性岩石。相较于K元素,Na多以离子形式被淋滤掉,表明风化过程主要分解了斜长石,而钾长石成分保存相对完好(图7)。
图7 A-CN-K三角图解(a)与Th/Sc-Zr/Sc图解(b)Fig.7 a. A-CN-K triangular diagram; b. Th/Sc-Zr/Sc discrimination diagram
4.3 下扬子早寒武世的古环境特征
一系列研究表明部分微量元素(Sr,Ba,Cu,Mo)能够指示沉积时的古气候和氧化-还原状态[48-49,57]。Sr元素主要来源于含盐水体,而Ba元素聚集于细粒碎屑沉积物中。在相关性分析中,Sr,Ba元素与Al2O3的含量没有明显的相关性(r=−0.25,0.24),表明这些元素具有一定原生性,能够反映当时的水体环境。Sr/Ba比例被广泛用于恢复沉积水体古盐度及古气候状态,其中Sr/Ba>1.00代表了高盐度干旱的气候条件,而Sr/Ba<1.00则代表湿润气候条件下的低盐度水体环境[57-58]。在本次研究的幕府山组中,大多数泥岩样品有较低Sr/Ba比(0.09~0.98),仅有两个样品比值为3.20和1.59,这一结果反映了潮湿低盐度的古气候条件占据了官地1井幕府山组沉积的大多数时期。在幕府山组的顶部及底部,更高的Sr/Ba比值指示了更加干旱、高盐度的沉积环境[47, 55-56]。
V元素更倾向于在缺氧沉积物中聚集[38],在本研究中,V元素与陆源碎屑没有明显相关性。V元素在非硫化的还原条件下易于从水体中运移到沉积物中。在非硫化还原环境下,V的分布通常与TOC的聚集有明显的相关,而在硫化环境下,V的分布与TOC的聚集没有明显的相关性[54]。相较于PAAS和黑海环境(PAAS样 品 中V×1 000/Al比 值为15.00,而黑海沉积物中该比值为28.80),幕府山组样品中V元素展示出强烈的富集(25.40~501 μg/g,平均值167.23 μg/g,V/Al 比值为6.04~181.95,平均值77.57)。此外,幕府山组没有发现明显的V/Al比值与TOC的相关性,以上的指标指示了硫化、静水环境,V/(V+Ni)比值也能够用来指示古氧化还原环境,比值在0.47与0.93之间,大多数样品指示了还原/硫化的水体环境。
综上,通过分析受陆源碎屑影响微弱的微量元素特征,能够对古环境进行判断。在本研究中,幕府山组泥岩沉积于潮湿且低盐度环境。此外,氧化还原敏感参数的微量元素比值指示了还原/硫化环境,其中更多的指标显示了硫化环境。
5 结论
(1)稀土元素,Rb,Zr,Nb,Cs,Th等元素与陆源元素(Al,Sc)具有明显的相关性,表明官地1井幕府山组钙质/炭质泥岩样品主体成分来源于陆源碎屑。
(2)官地1井指示下扬子陆域早寒武世幕府山组泥岩遭受了弱-中等强度的风化作用。
(3)通过对陆源碎屑影响较小的微量元素分析,官地1井幕府山组泥岩在早寒武世沉积于潮湿-低盐度且还原/硫化环境之下,有利于烃源岩的形成。