APP下载

碳酸酯应用于锂离子电池电解液概述

2021-12-17郭丽

科技信息·学术版 2021年1期
关键词:电解液碳酸溶剂

郭丽

在锂离子电池电解液中,碳酸酯是非常常见的溶剂,从碳酸乙烯酯(EC)、碳酸丙烯酯(PC)到碳酸二甲酯(DMC)、碳酸二乙酯(DEC)和碳酸甲乙酯,我们都非常熟悉了,连不那么常用的碳酸二丙酯(DPC),碳酸二苯酯(DPhC),碳酸二丁酯(DBC),碳酸丁烯酯(BC)等,也有人研究过。

碳酸酯并非很常见的溶剂,远不如酮类/醇类/羧酸酯类那么出名,因此,一般的化学辞典或有机化学教材上,对碳酸酯的介绍资料都是比较粗略的。有些资料也不太准确,比如当年DEC的凝固点被错误的记载为-43℃,实际上应该是-73℃左右,这个错误在锂电电解液研究的过程中,被人们发现才纠正过来。

环状碳酸酯

国内的工业上应用,比较早的是碳酸丙烯酯,碳酸二甲酯和碳酸二乙酯。碳酸丙烯酯因为溶解能力强、液态范围宽、稳定性好,在电化学研究中很早就得到了重视和应用,早期的锂一次电池中,就使用碳酸丙烯酯与醚类溶剂搭配,如PC+DME,或PC+DME+DOL,或PC+DME+THF等。在一些电化学的非水体系中,也常常用到PC做为溶剂。工业上,碳酸丙烯酯又被简称为“碳丙”,是一种比较常用的溶剂。由于PC的优点和易于获取,锂离子电池的电解液研究,早期离不开PC这个溶剂。

PC是一种优点很明显的溶剂,化学稳定性比较高,精馏时也不容易分解.它的沸点242℃,熔点-48.8℃,液态范围高达290℃,这是非常大的一个优点.无论冷热都能使用,对于溶剂来讲是非常难得的。另外,PC的溶解性非常好,能够溶解的物质多,具有很好的通用性.同时PC还无毒,价格低廉,等等.集很多优点于一身.

在这些溶剂中,PC的粘度是比较大的.这就导致了含PC高的电解液,虽然在低温下它不太容易凝结,但是黏度较大,不利于锂离子的迁移,离子的迁移赶不上需要,造成较大的浓差极化,倍率性能就会比较差.这个也是实验证实了的.因此,一般在低温的电解液中,如果是小电流的应用,PC可以用,但一旦倍率较高,PC就得小心控制用量,否则性能很难看的.

然而,研究中人们慢慢发现,在锂离子电池中,EC的表现比PC还要好,除了相对介电常数(EC 89)大于PC(PC 65)外,其做成电池的循环性能也比PC好,于是EC就慢慢发展起来了。究因原因,EC在负极上的成膜电位比较高,当充电时负极的电位不断下降,还原电位较高的EC优先析出,参与了SEI膜的形成,这种膜比较有利于稳定负极并且阻抗适中,电池性能表现上比较好。

EC还有一个优点,就是溶解之后,其粘度比PC也要小一点。对于锂电池电解液而言,低的粘度意味着更低的离子迁移阻力,也就意味着更好的电池性能。此外,还有一个隐性的原因,那就是PC在石墨类负极材料上面的共嵌入的副作用使得PC不太适合高浓度使用,而EC则没有这一缺限,慢慢的EC就取代了PC成为电解液中的主要溶剂,不可缺少的成分。

但是EC也是有缺点的,熔点高达37℃。这一点与PC判若两"类"。从结构来看,PC只是在环上多了一个甲基,但这个甲基带来了分子的不对称,使得PC的极性变小,结晶时更加困难,因此熔点大大降低了。EC的高熔点带来的问题主要表现在两个方面:

1.低温性能不好。由于EC凝固点高,同样含量,比如说30%,在不太低的温度下,EC就会可能从液相中沉淀出来,造成隔膜或极片孔隙被堵塞,会破坏电池的性能。同时EC的析出也会导致混合溶剂的介电常数下降,不利于LIPF6的离解。因此,在低温下,有时LIPF6也会跟着一起析出,形成LIPF6和EC的混合物固体,导致注液机堵泵或者是电池内阻迅速上升。因此,一般而言,在低温型的电解液中,EC的含量一般在25%以下,少的甚至只有15%左右。

2.生产中使用EC,得先在37度之上将它熔化才好使用(理论上讲不熔化它而是作为固体投料也可以,但是EC晶体是蜡状的,流动性不好,而且加料计量上也不如液化之后使用简单),比较保险的做法通常是加热到60℃以上。但是,电解液的主盐LIPF6怕热,在高温下容易分解导致酸度上升,同时它在溶剂中的溶解又是大量放热的过程。因此,LIPF6不能在这么高的温度下溶解,又必须得先把EC和其它溶剂混合使得混合溶剂能够降至比较低的温度(通常在0~15℃范围)再加入。

线性碳酸酯

线性碳酸酯的特性与环状碳酸酯差异比较大,总的来讲,其沸点较低,粘度较低,介电常数也比较低(相对介电常数 EC 89.8> PC 64.9 > DMC 3.12 > EMC 2.96 > DEC 2.82),在电解液中更多的充当一个稀释剂或者是低粘度组分的作用,有利于锂离子在其中游泳。

锂离子的迁移对于锂电池的电极反应是必须的,六氟磷酸根因为不参与电极反应,它的移动虽然携带了电荷形成电流,但不能为电极反应作出贡献,属于无效迁移。真正对电池性能作出贡献的是锂离子的迁移,它所承载的电荷转移量除以阴阳离子共同完成的总电荷量,就是锂离子的迁移数。迁移数越高说明锂离子完成使命的效率越高,对电极反应有利。但是由于阴离子直接影响到锂盐在溶液中的溶解性和离解能力,从而影响到电解质的浓度和电导率,适用的阴离子选择并不太多。

如果烷基的碳原子数不断增加,线性碳酸酯的极性和分子量都在变化,其粘度和沸点也会不断上升,同时对锂盐的溶解度却相应的在下降。因此,线酯有一定的范围可供选择。但当单一烷基的碳原子超过3个时,碳酸酯就变得不那么好用了,它越来越像是烷烃类溶剂,对锂盐的溶解性迅速变差,导致锂盐难以达到实用的范围时,这种酯类作为溶剂就不太合适了。比如碳酸二丙酯,碳酸甲丙酯加入到电解液中时,它们与其它碳酸酯的相溶性以及对锂盐的溶解能力,都会出现比较明显的下降.在温度降低的情况下,这种情况更加突出.

從DMC到EMC再到DEC,随着分子量的增大,溶剂的密度却在递减。DMC的密度稍大于水,1.063g/ml,EMC为 1.012 g/ml 和水非常接近,DEC则是0.969 g/ml,已经比水轻了。如果用水来灭碳酸酯的火灾,要注意它们与水的密度是很相近的,恐怕得用泡沫覆盖了。当然,配成电解液之后,由于环酯和锂盐的加入,电解液的密度是明显大于水的,通常在1.2g/ml以上了。

碳酸烷基酯都是有氣味的,DMC的气味比较小,EMC和DEC的气味比较大。因此,用DMC作为溶剂时,虽然DMC的挥发性大于EMC(也是优点),但其气味较小(比乙酸乙酯的气味都小),相对更受欢迎。DMC的溶解能力也是很强的,对油漆、记号笔迹、压敏胶残胶、喷墨打印机油墨都有溶解能力,对电解液残留挥发后的锂盐等也有效果。但要注意的是,DMC和EMC都是典型的甲类易燃溶剂,使用中要注意防止静电,防止爆燃。使用DMC的另一优点是,DMC在成本上比EMC和DEC要便宜得多,经济上合算。同时DMC也是一种绿色的溶剂,不象芳烃、环已烷、丙酮等溶剂具有那么大的毒性。

从熔点看,DMC高于EMC再高于DEC;从粘度看,DMC小于EMC再小于DEC,因此对电导率的提升效果,是DMC优于EMC再优于DEC。不过如果对比低温充放电性能,却往往是EMC最好,DMC次之,DEC再次之。主要原因在于EMC在低温下具有较低的凝固点和较低的低温粘度,导致其低温下的综合性能较好。而DMC由于凝固点较高(4.6℃),虽然与其它溶剂混溶了,但在极低的温度下还是表现出不够好的低温性能,仿佛它还是想从混合液中析出的趋势一直在发挥着作用。

总体而言,目前碳酸酯在锂离子电池电解液领域已经被广泛应用,引领了新能源行业的发展,但也有很多可优化和提升的空间,仍具备深入科研的前提条件。

参考文献

[1]Xiao LF,Cao YL,Ai XP,Yang HX.Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries [J].Electrochim Acta,2004,49:4857-4863.

[2]薛照明,陈春华.锂离子电池非水电解质锂盐的研究进展[J].化学进展,2005,17(3):399-405.

[3]Katami N,Ohsaki T,Hasebe H,Yamamoto M.Laminated thin Li-ion batteries using a liquid Electrolyte [J].J Electrochem Soc,2002,149(1):9-12.

[4]Zhang SS.LiBF 3 Cl as an alternative salt for the electrolyte of Li-ion batteries [J].J Power Sources,2008,180:586-590.

[5]Li LF,Lee HS Li,Li H,Yang XQ,Yang KW,Yoon WS,Mc Breen J,Huang XJ.New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors [J].J Power Sources,2008,184:517-521.

猜你喜欢

电解液碳酸溶剂
洗衣服真的可以不用水吗
冒泡的可乐
碳酸饮料可以灭火
干洗是什么
新型高电压电解液用于锂电池的研究进展
浅谈大型榨油厂地下溶剂库选型
“碳酸钠与碳酸氢钠”知识梳理
电解金属锰生产中电解液除杂工艺的优化
碳酸饮料是牙齿“杀手”
蓄电池常见故障的检查