四川盆地安岳气田震旦系气藏叠合岩溶发育模式与主控因素
2021-12-16马新华闫海军陈京元何东博徐伟
马新华,闫海军,陈京元,何东博,徐伟
四川盆地安岳气田震旦系气藏叠合岩溶发育模式与主控因素
马新华1,闫海军1,陈京元2,何东博1,徐伟2
(1. 中国石油 勘探开发研究院北京 100083;2.中国石油西南油气田分公司,四川 成都 610051)
通过对四川盆地安岳气田震旦系气藏岩溶储层发育特征和完钻气井测试产能综合分析,从碳酸盐岩岩溶储层发育机制出发,提出叠合岩溶概念和发育模式,明确了叠合岩溶发育主控因素及其对完钻气井产能的控制作用。利用岩心、成像资料,考虑储集空间类型、大小以及缝洞搭配关系,将灯影组四段(灯四段)岩溶储层划分为缝洞型、孔洞型和孔隙型3种类型,缝洞型和孔洞型是灯四段优质储层。受原始沉积体岩性、物性及岩溶期古地貌特征差异影响,岩溶风化溶蚀深度、优质储层垂向发育位置及平面展布范围等特征存在差异。建立了“差异溶蚀”的叠合岩溶发育模式,指出丘滩体沉积特征、两期风化壳叠合程度、岩溶期断裂系统发育规模以及构造翻转的地质过程综合控制了叠合岩溶储层发育,同时叠合岩溶发育强度控制气井产能分布。叠合岩溶发育区是气藏开发优先目标,其储层发育模式与主控因素的研究对于安岳气田震旦系气藏开发评价、建产区筛选和井位部署具有重要的指导意义。
发育特征;发育模式;叠合岩溶;碳酸盐岩气藏;灯影组;震旦系;安岳气田;四川盆地
碳酸盐岩气藏在天然气储量、产量中占有重要地位,全球碳酸盐岩天然气可采储量约占天然气总可采储量的45 %,其产量约占天然气总产量的60 %,其中超过80 %的碳酸盐岩气藏储层成因与岩溶有关。岩溶型碳酸盐岩储层类型多样,广泛分布在中国四川盆地、鄂尔多斯盆地和塔里木盆地。中国岩溶型碳酸盐岩气藏经历了半个多世纪的勘探开发历程,从早期四川盆地川南下二叠统、川西南威远震旦系到四川盆地川东石炭系、普光、元坝、龙岗气田,鄂尔多斯盆地靖边气田,塔里木盆地塔中Ⅰ号气田,再到四川盆地安岳气田龙王庙组、震旦系深层碳酸盐岩气藏,分布范围从初期仅四川盆地拓展至目前四川、鄂尔多斯和塔里木三大盆地,开发层系从二叠系、石炭系新地层,向奥陶系、寒武系、震旦系古老层系挺进,产量规模从早期的几亿方增加至目前的400×108m3以上,揭示中国岩溶型碳酸盐岩气藏具有良好的勘探开发前景,是未来天然气增储上产的重要领域之一。
随着岩溶型碳酸盐岩气藏的勘探开发不断深入,岩溶型储层的研究也取得了极大进展,研究成果不胜枚举。岩溶储层按照不同的分类依据有不同的分类方案,按岩溶发生环境可以分为(准)同生期岩溶、表生期岩溶和埋藏期岩溶,按成因机制可以分为层间岩溶、顺层岩溶、潜山(风化壳)岩溶及构造-热液岩溶,按岩溶时间先后可以划分为同生期岩溶、早成岩期岩溶、晚成岩期岩溶和表成岩期岩溶,同时也建立了岩溶储层发育模式[1-7]。对于岩溶储层发育主控因素的研究各有侧重,主控因素包括原始沉积环境[7-8],表生环境和埋藏环境[9],古构造[10]、岩溶古地貌及古水系地质环境[11-13],构造运动、地层岩性和白云石化作用[14-24]等。这些研究论证了岩溶储层发育机理,明确了岩溶储层发育特征,建立了岩溶储层发育模式,确定了岩溶储层发育的主控因素,研究成果支撑了岩溶型碳酸盐岩气藏的区带评价和风险井位部署[25-30],但对于开发评价、建产阶段古老岩溶储层如何控制优质储层的发育、优质储层发育模式、主控因素及对高产气井的控制作用等研究相对比较缺乏。
作为中国目前发现最古老的海相碳酸盐岩气藏,安岳气田震旦系气藏对于西南上产发挥非常重要的作用。本文以安岳气田震旦系气藏为例,综合岩心、露头、钻井、测井和试气等资料,提出叠合岩溶概念和成因机制,明确安岳气田震旦系叠合岩溶储层发育特征,建立叠合岩溶发育模式,确定叠合岩溶发育的控制因素,分析叠合岩溶发育对气井产能的控制作用,揭示叠合岩溶储层发育的非均质性和气井高产的关系,以期对该类气藏的开发评价和产能建设提供技术支撑。
1 气藏概况
安岳气田震旦系气藏位于四川省遂宁市、资阳市和重庆市潼南县境内(图1),构造上隶属于四川盆地川中古隆起平缓构造区的威远-龙女寺构造群,位于乐山-龙女寺古隆起的东端,是古隆起背景上的一个大型潜伏构造[31]。安岳气田灯影组四段(灯四段)为台地背景上的一套碳酸盐岩建造,地层岩性以白云岩为主,与下伏灯三段为连续沉积,呈整合接触,与上覆灰岩、泥岩为主的麦地坪组、筇竹寺组不整合接触。受桐湾运动抬升影响,地层遭受不同程度剥蚀,研究区以西为德阳-安岳裂陷槽,灯四段快速尖灭,大部分地层残余厚度一般为280 ~ 380 m。
图1 四川盆地安岳气田构造
震旦系是四川盆地最古老的含油气层系,最早发现威远气田,其后在乐山-龙女寺古隆起的多个构造进行钻探,发现了龙女寺、安平店、资阳、高石梯等含气构造,但未获得重大突破。2011年7月高石1井测试获得高产气流,标志着安岳气田震旦系气藏的发现,气藏三级储量达上万亿方,潜在含气面积7 500 km2。之后,震旦系气藏勘探力度不断增强、开发评价持续深入,在成藏[32-35]、沉积[36-38]、岩石类型[39]、成岩[40-42]、古地貌[43-48]、储层[49-51]等方面取得了大量的研究成果,综合认为灯四段气藏大面积含气、储量整体规模大,但气藏储量丰度不均、气井产能差异大,是受古老微生物沉积和岩溶改造两方面综合控制的岩溶风化壳型碳酸盐岩气藏。
随着气藏开发评价的不断深入,动、静态资料不断丰富,逐步认识到安岳气田震旦系气藏地质条件的复杂性和特殊性,主要体现在:①受原始沉积古地貌、古环境及多期岩溶发育共同控制,不同部位岩溶储渗体发育期次、规模、物性等特征表现出较大的差异,储层非均质性强;②受储层发育厚度及储层内部非均质性综合控制,气井产能差异较大,在平面上呈现出显著的分区特征。
2 叠合岩溶储层发育模式
2.1 发育机制
四川盆地是在上扬子克拉通基础上发展起来的叠合盆地,经历了3期重要的盆地演化阶段[36],沉积了震旦系—中三叠统海相层系,地层累计厚度达6 000 ~ 7 000 m。这些海相地层经历了桐湾运动、加里东运动及印支运动,形成了多期古隆起及多个区域性不整合面。安岳气田震旦系灯影组受桐湾运动影响,发育3期幕式风化壳(图2)。桐湾运动Ⅰ幕发生在灯二段沉积末期,表现为灯三段区域性碎屑岩假整合于灯二段白云岩之上(图3a)。桐湾运动Ⅱ幕发生在灯影组沉积期末,表现为灯影组与下寒武统麦地坪组假整合接触(图3b)。桐湾运动Ⅲ幕发生在早寒武世麦地坪组沉积期末,表现为下寒武统麦地坪组与筇竹寺组假整合接触(图3c)。受多期构造运动、暴露时间以及地层剥蚀程度等综合影响,安岳气田灯四段顶部麦地坪组局部残存,灯四段呈现出两期风化壳岩溶叠合的特征。
图2 四川盆地震旦系-寒武系划分方案
叠合岩溶指受单一或多种成因机制控制,天然淡水对可溶性岩石进行多期岩溶作用的一种现象。广义的叠合岩溶相对复杂,成因机制既包括单一成因机制的多期次叠加,也包括两种或两种以上成因机制的叠加甚至是两者的结合。本文所强调的叠合岩溶是狭义的范畴,仅指受区域构造运动单一成因机制控制,发育多期构造不整合,同一地层前后遭受多期持续时间、构造强度等存在差异的岩溶溶蚀。这类岩溶往往暴露时间长、侧向展布范围广、纵向影响范围深,形成不同尺度孔、缝、洞等复杂介质的岩溶型储层。前人对岩溶风化壳储层的描述均侧重于一次构造不整合对有效储层控制、有效储层发育规律、储层预测的研究[3-4,7-9]。安岳气田震旦系气藏岩溶储层为受构造不整合控制,地层经历多期次表生岩溶,该现象在整个岩溶型碳酸盐岩储层发育过程中具有特殊性。本文着重强调叠合岩溶储层发育特征、发育模式和主控因素,明确叠合岩溶对气井产能的控制作用,从而有效指导气藏开发评价、开发建产区选择和井位部署。
图3 四川盆地灯二段—灯四段、麦地坪组与筇竹寺组接触关系
a.灯二段与灯三段假整合接触(峨边先锋剖面)b.灯影组与麦地坪组假整合接触(黔中麻江基东剖面);c.麦地坪组与筇竹寺组假整合接触(黔中麻江基东剖面)
2.2 识别证据
安岳气田灯四段储层以桐湾运动Ⅱ幕和Ⅲ幕两期风化壳岩溶作用形成的溶孔、溶洞和溶缝广泛发育为特征。野外露头、岩心、薄片、钻井等资料分析表明,灯四段风化岩溶特征明显[46-49]。
2.2.1露头证据
区域地层接触关系分析表明,桐湾运动Ⅱ幕、Ⅲ幕造成灯四段保留不全,灯影组与上覆下寒武统呈假整合接触关系(图3)。
2.2.2岩心证据
取心井岩心观察发现,距震旦系顶部约100 m内灯四段发育大量的溶洞、溶沟及岩溶角砾(图4a—c),可以作为风化壳岩溶的有力证据。其中2 ~ 10 cm溶洞常见,溶洞多被白云石、沥青或石英充填、半充填,高角度缝多发育在致密白云岩段,常被泥质云岩、泥岩充填。
2.2.3薄片证据
大量的岩心、薄片照片观察可以见到溶蚀残余物质,特别是非选择性溶蚀缝、洞中可见大量渗流粉砂等溶蚀充填物(图4d)。
2.2.4钻井证据
在钻井过程中井漏与放空是钻遇大型裂缝和溶洞的反应,同时也是风化壳型储层的最直观响应。安岳气田震旦系气藏在钻井过程中频繁出现井漏和放空,例如高石6井钻井液漏失量达到1 081 m3,高石2井放空可达6 m。
2.2.5井对比证据
通过完钻井录井、测井资料对比研究发现,研究区震旦系顶部不均一残留一套灰岩地层,结合全盆地研究成果,认为该层应为麦地坪组。整体上来说,桐湾运动Ⅱ幕发生在灯影组沉积期末,表现为灯影组与下寒武统麦地坪组假整合接触,桐湾运动Ⅲ幕发生在早寒武世麦地坪组沉积末期,表现为下寒武统麦地坪组与筇竹寺组假整合接触,麦地坪组在研究区局部残存,整个灯四段表现为桐湾运动Ⅱ幕和Ⅲ幕两期风化壳的叠合(图5),灯四段表现为叠合岩溶的特征。受叠合岩溶发育程度影响,不同区域溶蚀强度存在较大差异。
图4 安岳气田灯四段岩溶风化壳储层岩心典型特征
a.MX108井,藻叠层白云岩,扁圆状溶缝,埋深5 296.57 ~ 5 296.77 m;b.MX21井,藻砂屑白云岩,溶沟发育,埋深5 054.10 ~ 5 054.22 m;c.MX105井,藻凝块白云岩,裂缝沟通孔洞,埋深5 325.68 ~ 5 325.98 m;d.MX108井,粉细晶砂屑云岩,溶孔溶洞发育,埋深5 296.45 ~ 5 296.63 m
图5 安岳气田灯四段剖面对比
2.3 储层发育类型及分布特征
2.3.1储层发育类型
碳酸盐岩岩溶风化壳型储层由于受多种因素控制,储层表现为岩性类型多、孔缝洞多尺度、物性差异大、渗流能力高度复杂等特征。为了深入分析叠合岩溶对有效储层发育的影响,同时为了精细刻画有效储层内部的强非均质性,利用岩心、成像资料,综合考虑储集空间类型、大小与缝洞搭配关系,将灯四段岩溶储层划分为缝洞型、孔洞型和孔隙型3种类型(表1)。成像测井显示缝洞型储层溶蚀孔洞与裂缝搭配好,依据缝-洞搭配关系及其形态,可将其进一步分为顺裂缝状、裂缝-层状以及裂缝-蜂窝状;孔洞型储层成像测井显示溶蚀孔洞发育,裂缝欠发育,喉道以缩颈喉道为主,又进一步可以划分为蜂窝状溶孔型和层状溶孔型;孔隙型储层成像测井显示缝洞欠发育,喉道以片状喉道为主,根据孔隙发育成因,可分为晶间孔型和孤立溶孔型。对物性研究发现,缝洞型和孔洞型储层孔隙度多大于3 %,渗透率多大于0.1×10-3μm2,是相对优质储层,孔隙型储层孔隙度小于3 %,渗透率度小于0.01×10-3μm2。从成因上讲,缝洞型储层是岩溶垂直渗流带垂直缝、水平潜流带水平溶蚀扩大缝、岩溶体形态、喜马拉雅期高角度构造缝等多种因素的叠加;孔洞型储层主要是基于高能丘滩体基础上所进行的淡水林滤溶蚀;而孔隙型储层主要是原生或次生溶蚀的晶间孔(图6)。
表1 安岳气田灯四段储层类型识别模板
图6 安岳气田典型井储层类型发育特征柱状图
2.3.2储层分布特征
受原始沉积及后期古地貌综合影响,叠合岩溶发育呈现出“差异溶蚀”特征,因此,在对储层发育特征表征的时候综合沉积和古地貌两因素进行综合命名,采用“沉积类型-古地貌类型”的方法。沉积类型主要依据能量高低分为台缘和台内;古地貌类型主要划分为岩溶高地、岩溶斜坡和岩溶低地,同时依据所处斜坡位置和岩溶期地面径流是否为开放水体又将斜坡细分为上斜坡和下斜坡,上斜坡坡度陡、高差大、地面径流以封闭水体为主,下斜坡坡度缓、高差小、地面径流以开放水体为主。
安岳气田震旦系叠合岩溶纵向展现出以下特征(图7—图9):①叠合岩溶发育区缝洞型储层和孔洞型储层厚度厚、物性好,完钻气井测试产量高,是气藏优先开发的主体,受差异溶蚀作用影响,风化壳溶蚀深度在平面上表现出较大差异。平面上,风化岩溶发育深度介于100 ~ 200 m,台缘带下斜坡溶蚀厚度最厚,达185 m;台缘带上斜坡次之,达125 m;台内上斜坡最薄,仅109 m。②受原始沉积环境、沉积体物性及后期微地貌特征差异影响,完钻井纵向产层分布位置平面上存在差异。整体上来说,台缘带产层顶部距离风化壳近,台内厚,台内产层顶部相对于台缘带整体向下偏移10 m以上;另一方面,受风化剥蚀期差异溶蚀特征影响,台缘带上斜坡产层底部距离风化壳近,台缘下斜坡和台内上斜坡产层底部距离风化壳远,差异不明显。③受原始沉积体特征及后期差异溶蚀影响,储层非均质性较强,有效储层发育存在较大的差异。缝洞型储层台缘带上斜坡最发育,台内上斜坡最不发育;孔洞型储层台缘带下斜坡和台内上斜坡均较发育,差异不明显。整体上,台缘带上斜坡地层剥蚀严重(图7,W14井、W12井),有效储层厚度薄;台缘下斜坡溶蚀厚度厚,有效储层厚、物性好;台内上斜坡溶蚀厚度薄,有效储层相对较薄,物性较差。
图7 安岳气田磨溪区块台缘带南北向有效储层剖面
图8 安岳气田磨溪区块台缘-台内方向有效储层剖面
图9 安岳气田灯四段叠合岩溶发育特征对比柱状图
2.4 岩溶发育模式
依据沉积、构造、成岩、岩溶微地貌等特征分析,建立了安岳气田震旦系气藏“叠合岩溶”储层发育模式,通过井震结合预测上覆麦地坪组厚度可以间接刻画两期风化壳的叠合区分布范围,“叠合岩溶”差异溶蚀作用表现在4个方面。
2.4.1风化溶蚀程度的不同导致叠合岩溶储层品质存在差异
两期岩溶的叠合程度影响风化溶蚀程度,进而影响叠合岩溶储层品质(图10)。两期风化壳叠合区岩溶储层发育厚度厚、物性好,完钻井测试无阻流量达70×104m3/d,两期风化壳非叠合区岩溶储层发育厚度较薄、物性相对较差,完钻井测试无阻流量为52×104m3/d。例如,W1井处于两期风化壳叠合区,该井钻遇优质储层70 m,测试无阻流量达218×104m3/d;W26井处于两期风化壳非叠合区,优质储层发育厚度薄、物性差,测试无阻流量仅有10×104m3/d。
图10 安岳气田叠合岩溶发育模式
2.4.2岩溶古地貌特征的不同导致叠合岩溶残留地层厚度存在差异
磨溪区块台地边缘大部分地区处于岩溶斜坡下斜坡,但台地边缘北区处于岩溶斜坡上斜坡,沉积和岩溶均处于有利部位,风化溶蚀作用强烈,地层剥蚀严重,残留地层厚度较薄(图10,W7井),优质储层发育厚度小,测试无阻流量低,平均仅41×104m3/d。
2.4.3沉积古地貌高低不同导致叠合岩溶溶蚀效果存在差异
台地边缘高部位厚层丘滩体原始沉积体物性好,岩溶期淡水淋滤泄流通畅,优质储层发育,有效储层厚度厚,完钻井测试产量高(平均无阻流量107×104m3/d);低部位原始沉积体物性差,两期岩溶对储层的改造均弱,有效储层品质差,完钻井测试产量低(平均无阻流量17×104m3/d)。
2.4.4沉积环境的不同导致叠合岩溶储层发育特征存在差异
台地边缘沉积体呈厚层块状,岩溶期溶蚀效果好,完钻井测试产量高(平均无阻流量74×104m3/d),台地内部原始沉积体物性差,同时地层顶部发育硅质云岩,造成岩溶期地层剥蚀程度低,岩溶对物性的改善效果不明显,造成有效储层呈薄层多期分布,完钻井测试产量低(平均无阻流量8×104m3/d)。
3 叠合岩溶储层发育主控因素及其对气井产能的控制作用
3.1 主控因素
3.1.1丘滩体沉积特征是岩溶储层发育的物质基础
安岳气田震旦系气藏为受沉积+岩溶综合控制的风化壳型碳酸盐岩气藏,优质丘滩体为岩溶水的淋滤提供了良好的通道,更易形成规模优质储层。丘滩体沉积特征受沉积环境和沉积古地貌两方面因素控制。台缘带丘滩体呈厚层块状,沉积体原始物性好,台内带丘滩体呈多期薄层型,沉积体原始物性较差,同时沉积古地貌高部位更易形成优质规模丘滩体,而低部位丘滩体品质变差,不利于岩溶作用的发育。W1井和W3井原始沉积位置古地貌位置高,丘滩体呈厚层块状、物性好,叠合岩溶作用强,储层品质好,两者之间的W26井为沉积古地貌低部位,丘滩体物性变差,叠合岩溶作用弱,储层品质差。
3.1.2两期风化壳叠合程度是控制岩溶储层品质好坏的关键因素
两期风化壳叠合程度受两期风化壳界面是否重合、重合后风化剥蚀持续时间及两期岩溶期地层所处岩溶古地貌特征等多种因素控制。对于存在两期风化壳界面区域,岩溶储层品质与麦地坪组厚度呈反比,麦地坪组越厚,两期岩溶叠合程度越差,储层品质越坏;对于两期风化壳重合区域,重合后持续时间越长,溶蚀效果越好,储层品质越好;同时两期岩溶期岩溶微地貌配置关系也影响最终岩溶储层品质好坏,若两期均处于有利岩溶微地貌单元,则岩溶储层发育,储层品质好,反之则差。
3.1.3岩溶期断裂系统的发育规模是促使叠合岩溶发育的有利因素
桐湾运动导致安岳气田灯四段储层发育不同级别断层和裂缝,高能丘滩体和断裂系统为淡水淋滤提供了通道,风化壳顶部主要发育垂直缝,地表淡水以垂直渗流为主,中、下部主要发育水平溶蚀缝,地表淡水以水平潜流为主。不同级别及规模的断裂系统扩大了地层基质与地表淡水的接触范围,增强了溶蚀效果,促使岩溶储层规模发育。例如磨溪区块北部开发建产区中间有一近东西向展布的岩溶期断裂,受该断裂影响,顺裂缝岩溶和顺层岩溶发育,岩溶储层发育物性好、规模大,完钻开发井平均无阻流量102×104m3/d,平均动态储量42.6×108m3,是同区块其他井区的7.5 倍。
3.1.4沉积期—岩溶期的构造翻转地质过程加剧了岩溶储层发育的非均质性
安岳地区为开阔台地丘滩相沉积,在沉积期受海平面频繁升降及丘滩体多期发育综合影响,台缘带沉积古地貌高,台内沉积古地貌低,经沉积古地貌恢复研究发现,安岳气田震旦系气藏岩溶期台地内部古地貌位置高于台地边缘,因此沉积期到岩溶期台缘和台内经历了一个轻微的构造翻转的地质过程,构造由岩溶期的东高西低转变为现今的西高东低,构造的不均一隆升和下降导致应力释放缝分布的高度非均质性,导致沉积期高能沉积单元与岩溶期有利岩溶微地貌单元配置关系差,加剧了储层发育的非均质性。
图11 安岳气田震旦系气藏上覆灰岩厚度与气井无阻流量关系
3.2 对气井产能的控制作用
受其化学成分、物理特性等性质影响,碳酸盐岩储层发育不同尺度孔、缝、洞等多重介质,储层微观和宏观非均质性均较强,造成单井开发指标差异较大[50-59]。经研究发现,安岳气田震旦系叠合岩溶气藏完钻井测试无阻流量与上覆灰岩段(麦地坪组)厚度呈现明显的分区特征。
安岳气田灯四段气藏完钻井上覆灰岩厚度与测试无阻流量呈现出明显的负相关性(图11),震旦系上覆灰岩厚度与完钻气井无阻流量关系呈现出明显的四区特征,Ⅰ区:麦地坪组厚度为0 m;Ⅱ区:麦地坪组厚度介于0 ~ 5 m;Ⅲ区:麦地坪组厚度介于5 ~ 20 m;Ⅳ区:麦地坪组厚度大于20 m,除去第Ⅰ区外,灰岩厚度与完钻气井无阻流量呈幂函数关系,相关系数分别为0.89,0.95和0.99,叠合岩溶发育程度对完钻气井测试无阻流量具有非常强的控制作用。震旦系顶部麦地坪组厚度依靠地震手段很难刻画出来,目前依靠完钻井资料结合地质认识确定灰岩分布范围,依据叠合岩溶对气井产能的控制作用指导开发建产区筛选和井位部署。
4 结论
1)安岳气田震旦系气藏含气面积广、探明储量大、完钻气井测试无阻流量差异大,是一个受沉积和岩溶综合控制的古老微生物岩溶风化壳型碳酸盐岩气藏。基于岩溶储层发育特征及成因机制分析提出叠合岩溶概念。
2)安岳气田震旦系气藏发育缝洞型、孔洞型和孔隙型3种类型储层,缝洞型和孔洞型储层是优质储层。受原始沉积体岩性、物性及岩溶微地貌影响,岩溶溶蚀深度、有效储层纵向发育位置、侧向展布规模及地层残留程度等方面存在着极大的差异,建立了安岳气田震旦系气藏叠合岩溶发育模式。
3)明确了叠合岩溶发育的主控因素包括以下4个方面:①丘滩体沉积特征是岩溶储层发育的物质基础;②两期风化壳叠合程度是控制岩溶储层品质好坏的关键因素;③岩溶期断裂系统的发育规模是促使叠合岩溶发育的有利因素;④沉积期到岩溶期的构造翻转加剧了岩溶储层发育的非均质性。叠合岩溶差异溶蚀的储层发育特征导致完钻气井在平面上具有明显的分区特征,可以有效指导开发建产区筛选和井位部署。
[1] 马新华,杨雨,文龙,等.四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J].石油勘探与开发,2019,46(1):1-13.
Ma Xinhua,Yang Yu,Wen Long,et al.Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2019,46(1):1-13.
[2] 赵文智,沈安江,胡素云,等.中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J].石油勘探与开发,2012,39(1):1-12.
Zhao Wenzhi,Shen Anjiang,Hu Suyun,et al.Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J].Petroleum Exploration and Development,2012,39(1):1-12..
[3] 张宝民,刘静江.中国岩溶储集层分类与特征及相关的理论问题[J]. 石油勘探与开发,2009,36(1):12-29.
Zhang Baomin,Liu Jingjiang. Classification and characteristics of karst reservoirs in China and related theories[J]. Petroleum Exploration and Development,2009,36(1):12-29.
[4] 何治亮,马永生,朱东亚,等.深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J].石油与天然气地质,2021,42(3):533-546.
He Zhiliang,Ma Yongsheng,Zhu Dongya,et al.Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology,2021,42(3):533-546.
[5] 张庆玉,梁彬,淡永,等. 塔中北斜坡奥陶系鹰山组岩溶储层特征及古岩溶发育模式[J]. 中国岩溶,2016,35(2):106-113.
Zhang Qingyu,Liang Bin,Dan Yong,et al.Research of karst reservoirs characteristics and paleokarst development pattern of the Ordovician Yingshan formation north-slope of Tazhong,Tarim basin area[J]. Carsologica Sinica,2016,35(2):106-113.
[6] 夏日元,唐健生.黄骅坳陷奥陶系古岩溶发育演化模式[J].石油勘探与开发,2004,31(1):51-53.
Xia Riyuan,Tang Jiansheng. The development and evaluated patterns of Ordovician palaeo-karst in the Huanghua depression[J]. Petroleum Exploration and Development,2004,31(1):51-53.
[7] Xiao Di,Tan Xiucheng,Xi Aihua,et al.An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation,southern Sichuan Basin,SW China[J]. Marine and Petroleum Geology,2016,72:218-233.
[8] 宋金民,刘树根,李智武,等.四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素[J].石油与天然气地质,2017,38(4):741-752.
Song Jinmin,Liu Shugen,Li Zhiwu,et al.Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin,China[J]. Oil & Gas Geology,2017,38(4):741-752.
[9] 沈安江,赵文智,胡安平,等.海相碳酸盐岩储集层发育主控因素[J].石油勘探与开发,2015,42(5):545-554.
Shen Anjiang,Zhao Wenzhi,Hu Anping,et al.Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development,2015,42(5):545-554.
[10]沈安江,陈娅娜,张建勇,等.中国古老小克拉通台内裂陷特征及石油地质意义[J].石油与天然气地质,2020,41(1):15-25.
Shen Anjiang,Chen Yana,Zhang Jianyong,et al.Characteristics of intra-platform rift in ancient small-scale craton platform of China and its implications for hydrocarbon exploration[J]. Oil & Gas Geology,2020,41(1):15-25.
[11]漆立新,云露.塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J].石油与天然气地质,2010,31(1):1-12.
Qi Lixin,Yun Lu. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe oilfield[J]. Oil & Gas Geology,2010,31(1):1-12.
[12] Xiao Di,Tan Xiucheng,Zhang Daofeng,et al.Discovery of syngenetic and eogenetic karsts in the Middle Ordovician gypsum-bearing dolomites of the eastern Ordos Basin (central China) and their heterogeneous impact on reservoir quality[J]. Marine and Petroleum Geology,2019,99:190-207.
[13]谭秀成,聂勇,刘宏,等.陆表海碳酸盐岩台地沉积期微地貌恢复方法研究—以四川盆地磨溪气田嘉二2亚段A层为例[J].沉积学报,2011,39(3):486-494.
Tan Xiucheng,Nie Yong,Liu Hong,et al.Research on the method of recoverying microtopography of Epeiric Carbonate platform in depositional stage: a case study from the layer A of Jia 22Member in Moxi gas field,Sichuan Basin[J]. Acta Sedimentologica Sinica,2011,29(3):486-494.
[14] Xiao Di,Zhang Benjian,Tan Xiucheng,et al.Discovery of a shoal-controlled karst dolomite reservoir in the Middle Permian Qixia Formation northwestern Sichuan Basin,Southwest China[J]. Energy Exploration & Exploitation,2018,36(4):686-704.
[15]肖波,白晓亮,吕海涛.塔中隆起鹰山组岩溶储层特征及主控因素[J].西南石油大学学报(自然科学版),2018,40(5):59-70.
Xiao Bo,Bai Xiaoliang,Lv Haitao. Karst reservoir characteristics and main controlling factors of the Yingshan Formation in the Tarim basin central uplift[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2018,40 (5):59-70.
[16] Zhong Yuan,Tan XiuCheng,Zhao Limin,et al.Identification of facies-controlled eogenetic karstification in the Upper Cretaceous of the Halfaya oilfield and its impact on reservoir capacity[J]. Geological Journal,2019,54(1):450-465.
[17] Paola Ronchi,Andrea Ortenzi,Ornella Borromeo,et al.Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin,Kazakhstan)[J]. AAPG Bulletin,2010,94(9):1313-1348.
[18] Wang Baoqing,Ihsan S.Al-Aasm. Karst-controlled diagenesis and reservoir development: Example from the Ordovician main reservoir carbonate rocks on the eastern margin of the Ordos basin,China[J]. AAPG Bulletin,2002,86(9):1639-1658.
[19]吕修祥,陈佩佩,陈坤,等.深层碳酸盐岩差异成岩作用对油气分层聚集的影响——以塔里木盆地塔中隆起北斜坡鹰山组为例[J].石油与天然气地质,2019,40(5):957-971.
Lyu Xiuxiang,Chen Peipei,Chen Kun,et al.Effects of differential diagenesis of deep carbonate rocks on hydrocarbon zonation and accumulation:A case study of Yingshan Formation on northern slope of Tazhong uplift,Tarim Basin[J].Oil & Gas Geology,2019,40(5):957-971.
[20]袁晓飞. 断裂向下输导油气成藏分布的主控因素[J].大庆石油地质与开发,2020,39(2):36-41.
Yuan Xiaofei. Main controlling factors of the oil-gas accumulation distribution by the downward transportation of the faults[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):36-41.
[21]张亚金,张湘娟,张振伟,等. 古城地区奥陶系鹰山组白云岩储层特征及其控制因素[J].大庆石油地质与开发,2020,39(4):1-8.
Zhang Yajin,Zhang Xiangjuan,Zhang Zhenwei,et al.Characte⁃ristics and their controlling factors of Ordovician dolomite reservoir in Yingshan Formation in Gucheng area[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):1-8.
[22]贾俊. 叙利亚Tishirine油田复杂碳酸盐岩储层有效性综合评价[J].油气藏评价与开发,2020,10(2): 30-36.
Jia Jun. Comprehensive evaluation for effectiveness of complex carbonate reservoir: A case from Tishirine Oilfield in Syria[J]. Reservoir Evaluation and Development,2020,10
[23]张春林,姚泾利,李程善,等.鄂尔多斯盆地深层寒武系碳酸盐岩储层特征与主控因素[J].石油与天然气地质,2021,42(3):604-614.
Zhang Chunlin,Yao Jingli,Li Chengshan,et al.Characteristics of deep Cambrian carbonate reservoirs in the Ordos Basin and main control factors[J].Oil & Gas Geology,2021,42(3):604-614.
[24]赫俊民,王小垚,孙建芳等.塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J].石油与天然气地质,2019,40(5):1022-1030.
Hao Junmin,Wang Xiaoyao,Sun Jianfang,et al.Characteristics and main controlling factors of natural fractures in the Lower-to-Middle Ordovician carbonate reservoirs in Tahe area,Northern Tarim Basin[J].Oil & Gas Geology,2019,40(5):1022-1030.
[25]李成刚,李英强. 碳酸盐岩断溶体油藏模型识别图版及其应用[J].大庆石油地质与开发,2020,39(4):87-93.
Li Chenggang,Li Yingqiang. Identifying chart boards and their applications of the models for the fault-karst carbonate oil reservoir[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):87-93.
[26]王向荣,李潮流,邓继新,等. 塔里木盆地鹰山组致密碳酸盐岩地震岩石物理特征[J].大庆石油地质与开发,2020,39(5):117-126.
Wang Xiangrong,Li Chaoliu,Deng Jixin,et al.Seismic petrophysical properties of Yingshan-Formation tight carbonate rock in Tarim Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):117-126.
[27]蔡珺君,占天慧,邓庄,等. “动态法”产能方程在高压气藏开发中的应用:以四川盆地安岳气田为例[J].大庆石油地质与开发,2020,39(5):72-79.
Cai Junjun,Zhan Tianhui,Deng Zhuang,et al.Application of the productivity equation dynamic method based on in high-pressure gas reservoir development: Taking Anyue Gas Field in Sichuan Basin as an example[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):72-79.
[28]李小波,刘学利,杨敏,等.缝洞型油藏不同岩溶背景注采关系优化研究[J]. 油气藏评价与开发,2020,10(2): 37-42.
Li Xiaobo,Liu Xueli,Yang Ming,et al.Study on relationship optimization of injection and production in fractured-vuggy reservoirs with different karst background[J]. Reservoir Evaluation and Development,2020,10(2): 37-42.(2): 30-36.
[29]林煜,李相文,陈康,等.深层海相碳酸盐岩储层地震预测关键技术与效果——以四川盆地震旦系-寒武系与塔里木盆地奥陶系油气藏为例[J].石油与天然气地质,2021,42(3):717-727.
Lin Yu,Li Xiangwen,Chen Kang,et al.Key seismic techniques for predicting deep marine carbonate reservoirs and the effect analysis:A case study on the Sinian-Cambrian reservoirs in the Sichuan Basin and the Ordovician reservoirs in the Tarim Basin[J].Oil & Gas Geology,2021,42(3):717-727.
[30]康志江,李阳,计秉玉,等.碳酸盐岩缝洞型油藏提高采收率关键技术[J].石油与天然气地质,2020,41(2):434-441.
Kang Zhijiang,Li Yang,Ji Bingyu,et al.Key technologies for EOR in fractured-vuggy carbonate reservoirs[J].Oil & Gas Geo⁃logy,2020,41(2):434-441.
[31]马新华,胡勇,王富平.四川盆地天然气产业一体化发展创新与成效[J].天然气工业,2019,39(7):1-8.
Ma Xinhua,Hu Yong,Wang Fuping. An integrated production-supply-storage-marketing system for natural gas development in the Sichuan Basin: Innovation and achievements[J]. Natural Gas Industry,2019,39(7):1-8.
[32]魏国齐,杨威,张健,等.四川盆地中部前震旦系裂谷及对上覆地层成藏的控制[J]. 石油勘探与开发,2018,45(2):179-189.
Wei Guoqi,Yang Wei,Zhang Jian,et al.The pre-Sinian rift in central Sichuan Basin and its control on hydrocarbon accumulation in the overlying strata[J]. Petroleum Exploration and Development,2018,45(2):179-189.
[33]杜金虎,邹才能,徐春春,等.川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发,2014,41(3):268-277.
Du Jinhu,Zou Caineng,Xu Chunchun,et al.Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao formation of central Sichuan paleo-uplift,Sichuan basin[J].Petroleum Exploration and Development,2014,41(3):268-277.
[34]魏国齐,杜金虎,徐春春,等.四川盆地高石梯-磨溪地区震旦系-寒武系大型气藏特征与聚集模式[J].石油学报,2015,36(1):1-12.
Wei Guoqi,Du Jinhu,Xu Chunchun,et al.Characteristics and accumulation modes of large gas reservoir in Sinian-Cambrian of Gaoshiti-Moxi region,Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(1):1-12.
[35]魏国齐,杨威,杜金虎,等. 四川盆地高石梯-磨溪古隆起构造特征及对特大型气田形成的控制作用[J].石油勘探与开发,2015,42(3):257-265.
Wei Guoqi,Yang Wei,Du Jinhu,et al.Tectonic features of Gaoshiti-moxi paleo-uplift and its controls on the formation of a giant gas field,Sichuan basin,SW China[J]. Petroleum Exploration and Development,2015,42(3):257-265.
[36]徐哲航,兰才俊,杨伟强,等.四川盆地震旦系灯影组微生物丘沉积演化特征[J].大庆石油地质与开发,2018,37(2):15-25.
Xu Zhehang,Lan Caijun,Yang Weiqiang,et al.Sedimentary and evolutionary characteristics of Sinian Dengying formation microbial mound in Sichuan Basin[J]. Petroleum Geology and Oilfield Development in Daqing,2018,37(2):15-25.
[37]宋金民,罗平,刘树根,等.四川盆地西部震旦系灯影组沉积储层特征[J].成都理工大学学报(自然科学版),2018,45(1):27-44.
Song Jinmin,Luo Ping,Liu Shugen,et al.The deposition and reservoir characteristics of Dengying Formation in western Sichuan Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(1):27-44.
[38]陈娅娜,沈安江,潘立银,等.微生物白云岩储集层特征、成因和分布—以四川盆地震旦系灯影组四段为例[J].石油勘探与开发,2017,44(5):704-715.
Chen Yana,Shen Anjiang,Pan Liyin,et al.Features,origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2017,44(5):704-715.
[39]翟秀芬,汪泽成,罗平,等.四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因[J].天然气地球科学,2017,28(8):1199-1210.
Zhai Xiufen,Wang Zecheng,Luo Ping,et al.Characteristics and origin of microbial dolomite reservoirs in Upper Sinian Dengying Formation,eastern Gaoshiti area,Sichuan Basin,SW China[J]. Natural Gas Geoscience,2017,28(8):1199-1210.
[40]强深涛,沈平,张健,等.四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化[J].沉积学报,2017,35(4):797-811.
Qiang Shentao,Shen Ping,Zhang Jian,et al.The evolution of carbonate sediment diagenesis and pore fluid in Dengying Formation,central Sichuan Basin[J]. Acta Sedimentologica Sinica,2017,35(4):797-811.
[41]冯明友,强子同,沈平,等.四川盆地高石梯-磨溪地区震旦系灯影组热液白云岩证据[J]. 石油学报,2016,37(5):587-598.
Feng Mingyou,Qiang Zitong,Shen Ping,et al.Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area,Sichuan Basin[J]. Acta Petrolei Sinica,2016,37(5):587-598.
[42]单秀琴,张静,张宝民,等.四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据[J].石油学报,2016,37(1):17-29.
Shan Xiuqin,Zhang jin,Zhang Baomin,et al.Dolomite karst reservoir characteristics and distribution evidences of Sinian Dengying Formation,Sichuan Basin[J]. Acta Petrolei Sinica,2016,37(1):17-29.
[43]金民东,谭秀成,童明胜,等.四川盆地高石梯-磨溪地区等四段岩溶古地貌恢复及地质意义[J].石油勘探与开发,2017,44(1):58-68.
Jin Mindong,Tan Xiucheng,Tong Mingsheng,et al.Karst paleogeomorphology of the fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi area,Sichuan Basin,SW China: Restoration and geological significance[J]. Petroleum Exploration and Development,2017,44(1):58-68.
[44]刘宏,罗思聪,谭秀成,等.四川盆地震旦系灯影组古岩溶地貌恢复及意义[J].石油勘探与开发,2015,42(3):283-293.
Liu Hong,Luo Sicong,Tan Xiucheng,et al.Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance,SW China[J]. Petroleum Exploration and Development,2015,42(3):283-293.
[45]李启桂,李克胜,周卓铸,等.四川盆地桐湾不整合面古地貌特征与岩溶分布预测[J].石油天然气与地质,2013,34(4):516-521.
Li Qigui,Li Kesheng,Zhou Zhuozhu,et al.Palaeogeomorphology and karst distribution of Tongwan unconformity in Sichuan Basin[J]. Oil & Gas Geology,2013,34(4):516-521.
[46]汪泽成,姜华,王铜山,等.四川盆地桐湾期古地貌特征及成藏意义[J].石油勘探与开发,2014,41(3):305-312.
Wang Zecheng,Jiang Hua,Wang Tongshan,et al.Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development,2014,41(3):305-312.
[47]杨雨,黄先平,张健,等.四川盆地寒武系沉积前震旦系顶界岩溶古地貌特征及其地质意义[J].天然气工业,2014,34(3):38-43
Yang Yu,Huang Xianping,Zhang Jian,et al.Features and geological significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry,2014,34(3):38-43.
[48]闫海军,彭先,夏钦禹,等.高石梯—磨溪地区灯影组四段岩溶古地貌分布特征及其对气藏开发的指导意义[J].石油学报,2020,41(6):658-670+752.
Yan Haijun,Peng Xian,Xia Qinyu,et al.Distribution features of ancient karst landform in the fourth Member of the Dengying Formation in the Gaoshiti-Moxi region and its guiding significance for gas reservoir development[J]. Acta Petrolei Sinica,2020,41(6):658-670+752.
[49]朱东亚,张殿伟,李双建,等.四川盆地下组合碳酸盐岩多成因岩溶储层发育特征及机制[J].海相油气地质,2015,20(1):33-44.
Zhu Dongya,Zhang Dianwei,Li Shuangjian,et al.Development genesis and characteristics of karst reservoirs in Lower assemblage in Sichuan Basin[J]. Marine Origin Petroleum Geology,2015,20(1):33-44.
[50]李熙喆,郭振华,胡勇,等.中国超深层构造型大气田高效开发策略[J].石油勘探与开发,2018,45(11):111-118.
Li Xizhe,Guo Zhenhua,Hu Yong,et al.Efficient development strategies for large ultra-deep structural gas fields in China[J]. Petroleum Exploration and Development,2018,45(11):111-118.
[51]贾爱林,闫海军,郭建林,等.不同类型碳酸盐岩气藏开发特征[J].石油学报,2013,34(5):914-923.
Jia Ailin,Yan Haijun,Guo Jianlin,et al.Development characteristics for different types of carbonate gas reservoirs[J]. Acta Petrolei Sinica,2013,34(5):914-923.
[52]贾爱林,闫海军. 不同类型典型碳酸盐岩气藏开发面临问题与对策[J].石油学报,2014,35(3):519-527.
Jia Ailin,Yan Haijun. Problems and Countermeasures for various types of typical carbonate gas reservoirs development[J]. Acta Petrolei Sinica,2014,35(3):519-527.
[53]贾爱林,闫海军,郭建林,等.全球不同类型大型气藏的开发特征及经验[J].天然气工业,2014,34(10):33-46.
Jia Ailin,Yan Haijun,Guo Jianlin,et al.Characteristics and experiences of the development of various giant gas fields all over the world[J]. Natrual Gas Industry,2014,34(10):33-46.
[54]闫海军,何东博,许文壮,等.古地貌恢复及对流体分布的控制作用—以鄂尔多斯盆地高桥区气藏评价阶段为例[J].石油学报,2016,37(12):1483-1494.
Yan Haijun,He Dongbo,Xu Wenzhuang,et al.Paleotopography restoration method and its controlling effect on fluid distribution: A case study of the gas reservoir evaluation stage in Gaoqiao,Ordos Basin[J]. Acta Petrolei Sinica,2016,37(12):1483-1494.
[55]方义生,徐树宝,李士伦.乌连戈伊气田开发实践和经验[J].天然气工业,2005,25(6):90-93.
Fang Yisheng,Xu Shubao,Li Shilun. Development practice and experience of Urengoy gas field[J]. Natural Gas Industry,2005,25(6):90-93.
[56]闫海军,贾爱林,冀光,等. 岩溶风化壳型含水气藏气水分布特征及开发技术对策——鄂尔多斯盆地高桥区下古气藏为例[J]. 天然气地球科学,2017,28(5):801-811.
Yan Haijun,Jia Ailin,Ji Guang,et al.Gas-water distribution characteristic of the karst weathering crust type water-bearing gas reservoirs and its development countermeasures: case study of Lower Paleozoic gas reservoir in Gaoqiao,Ordos Basin[J]. Natural Gas Geoscience,2017,28(5):801-811.
[57]马新华.创新助推磨溪区块龙王庙组大型含硫气藏高效开发[J].天然气工业,2016,36(2):1-8.
Ma Xinhua. Innovation-driven efficient development of the Longwangmiao Fm large-scale sulfur gas reservoir in Moxi block,Sichuan Basin[J]. Natural Gas Industry,2016,36(2):1-8.
[58]闫海军,邓惠,万玉金,等.四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J].天然气地球科学,2020,31(8):1152-1160.
Yan Haijun,Deng Hui,Wan Yujin,et al.The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth Member of Dengying Formation in Moxi area,Sichuan Basin[J]. Natural Gas Geoscience,2020,31(8):1152-1160.
[59]马新华.四川盆地天然气发展进入黄金时代[J].天然气工业,2017,37(2):1-10.
Ma Xinhua. A golden era for natural gas development in the Sichuan Basin[J]. Natural Gas Industry,2017,37(2):1-10.
Development patterns and constraints of superimposed karst reservoirs in Sinian Dengying Formation,Anyue gas field,Sichuan Basin
Ma Xinhua1,Yan Haijun1,Chen Jingyuan2,He Dongbo1,Xu Wei2
(1,,100083,;2,,610051,)
Comprehensive analyses of karst reservoir development characteristics and productivity testing of completed wells in the reservoirs of the Sinian Dengying Formation,Anyue gas field,Sichuan Basin,are combined with the development mechanisms for carbonate karst reservoirs to propose a concept and development model of superimposed karst and clarify their main controlling factors and effect on gas well performance. According to core,imaging data,reservoir space type,size and the configuration between fractures and cavities,the karst reservoirs are classified into three types: fracture-cavity type,pore-cavity type and pore type. High-quality reservoirs in the fourth member of the Dengying Formation in the field mostly belong to the first two types. Influenced by the differences in the initial lithology and physical properties of sedimentary strata and in paleogeomorphology characteristics during karst period,the karst reservoirs vary in terms of dissolution depth,vertical development locations and plane distribution range. A development model with differential dissolution for superimposed karst is thus proposed. It is also suggested that the sedimentary characteristics of microbial mounds and shoals,the overlapping two-stage weathering crust,the development scale of fault-fracture systems and the geological process of tectonic inversion control the development of superimposed karst reservoirs. Apart from that,superimposed karst development intensity also controls gas well performance. Based on these understandings,it is suggested a development priority on superimposed karst reservoirs in the basin. The study of development model and the controlling factors of these reservoirs is helpful in gas reservoir development evaluation,production area screening and well emplacement in the area.
development characteristic,development model,superimposed karst,carbonate gas reservoir,Dengying Formation,Sinian system,Anyue gas field,Sichuan Basin
TE122.2
A
0253-9985(2021)06-1281-14
10.11743/ogg20210604
2020-04-14;
2021-10-12。
马新华(1962—),男,博士、教授级高级工程师,石油天然气地质综合研究及油气勘探开发管理。E⁃mail: xinhuam@petrochina.com.cn。
国家科技重大专项(2016ZX05015);中国石油集团重大科技专项(2016E-0606,2021DJ1504)。
(编辑 张亚雄)