基于极化敏感阵列的加权融合测角方法
2021-09-05杨美娟李文龙
杨美娟 李文龙
摘要:角度估计是雷达的一个关键功能。极化敏感阵列用作雷达天线可有效减小模型误差,改善测角性能。为提高目标角度估计精度,本文提出了一种扩展的加权融合测角方法。首先对完备电磁矢量进行介绍,建立了极化-空域信号处理模型;其次推导了扩展后的加权融合测角方法;最后结合稀疏恢复测角方法,以双正交电偶极子阵列天线为例,验证了方法的有效性。结果表明,极化信息的引入,减小了阵列信号模型的误差,并通过极化加权使得该方法能够有效提升目标空间角度估计的精度。
关键词:电磁矢量;极化敏感阵列;加权融合;DOA估计
中图分类号:TN821+.1文献标识码:ADOI:10.19452/j.issn1007-5453.2021.03.005
传统雷达信号处理领域一般聚焦于信号的时间延迟、多普勒频移和空间到达角,较少关注信号的极化信息。近年来,随着信号处理相关应用的不断增多,极化敏感阵列天线在雷达领域的逐渐崭露头角,极化信号处理技术成为国内外学者新的关注点[1-4]。获取极化信息的主要途径是采用极化敏感阵列,通过引入信号的极化信息,可提高阵列自由度,增加阵列接收数据的冗余信息,减少模型误差对后续信号处理分析的影响[5-7]。此外,极化阵列的检测性能对信号的极化状态不敏感,能够满足各类极化信号的检测要求,证明其具有较强的检测鲁棒性[8]。
目标到达角估计是雷达信号处理领域的重点研究内容之一,阵列测角的物理基础是电磁波在均匀介质中传播的直线性和阵列天线的方向性。国内外学者已相继在极化信号处理领域开展了有关工作,针对参数估计的研究已成为热点问题。国外方面主要通过将经典的超分辨测角算法,如多重信号分类算法(MUSIC)、旋转不变子空间法(ESPRIT)等,经过改进修正应用至极化敏感阵列上,实现目标空间角度和极化角度的联合估计[9-12]。国内方面,王洪洋等[13]说明了如何通过完备电磁矢量在空频和极化域进行联合参数估计,大多学者[14-16]采用修正MUSIC算法或降维MUSIC算法进行目标角度估计。然而,国内外鲜有利用极化信息对空域角度估计值加权来提升到达角(DOA)估计精度的研究。
为了提高DOA估计精度,本文提出一种扩展后的利用极化敏感阵列的完备电磁矢量信息对单极子阵列所测角度进行加权融合的方法,该方法能够有效提升测角精度,且具有较强的鲁棒性。
1极化敏感阵列信号处理基础
1.1完備电磁矢量
本文主要考虑远场平面窄带信号,且各阵元所接收数据的噪声互不相关,均为随机高斯白噪声。设存在一远场平面电磁波沿-r?传播(见图1)。电场强度复矢量表达式为:
3计算机仿真与分析
采用单极子天线,并利用基于稀疏恢复原理的AGO方法[18]进行目标角度估计,将该测角结果与利用加权融合算法得到的结果进行对比验证。采用半波长布阵,波束宽度为10.42°,快拍数为6,目标信号的来波方向设置为15°,极化参数为63°。仿真从两种情况出发,分别为无随机幅相误差和有随机幅相误差,考查测角均方根误差(RMSE)随信噪比(SNR)的变化,令随机幅度误差不超过±0.5dB,随机相位误差不超过±5°。通过多次蒙特卡罗试验,对比X方向电偶极子阵列、Y方向电偶极子阵列和两种阵列加权融合后的测角均方根误差随信噪比的变化。仿真结果如图3所示。
图3中红线、黑线和蓝线依次表示利用AGO方法在采用X方向阵列、Y方向阵列和两方向阵列加权融合时,有无随机幅相误差的测角RMSE随信噪比的变化。从图3(a)可以看出,随着信噪比的提高,三种阵列的测角RMSE均相应减小,并且加权融合后的测角RMSE小于单一方向阵列的测角RMSE;观察图3(b)也可以得到相同的结论,说明加权融合方法能够有效提高测角精度。通过对比图3(a)和(b)发现,相比无随机幅相误差,存在误差时AGO极化加权融合的测角RMSE增加不超过0.1°,说明本文方法具有较好的鲁棒性。多次改变仿真条件,均可得到与图3类似的仿真结果,故具体仿真图不再一一罗列。
4结束语
针对传统测角方法精度低的现状,提出了一种扩展后的基于极化敏感阵列的加权融合测角方法。该方法通过获取目标极化信息,提升信号处理模型准确度,并利用加权系数提高目标角度的估计精度。该方法可结合传统的测角方法加权,也可利用较新的稀疏恢复测角方法加权,因此,为提升测角精度提供了一种较好的思路。此外,后续研究中可将本文方法应用至综合后的阵列天线[19]或稀疏优化阵列[20],验证本文方法的适应性。
参考文献
[1]Nehorai A,Paldi E. Vector-sensor array processing for electromagnetic source localization[J]. IEEE Transactions on Signal Processing,1994,42(2):376-398.
[2]Wong K T,Zoltowski M D. Root-MUSIC-based directionfinding and polarization estimation using diversely polarized possibly collocated antennas[J]. IEEE Antennas and Wireless Propagation Letters,2004(3):129-132.
[3]Wong K T,Yuan Xin. Vector cross-product direction-finding with an electronmagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles-loops[J]. IEEE Transactions on Signal Processing,2011,59(1):160-171.
[4]庄钊文,徐振海,肖顺平.极化敏感阵列信号处理[M].北京:国防工业出版社,2005. Zhuang Zhaowen, Xu Zhenhai, Xiao Shunping. Signal processing of polarization sensitive array[M].Beijing: National Defense Industry Press, 2005. (in Chinese)
[5]徐振海.极化敏感阵列信号处理的研究[D].国防科学技术大学,2004. Xu Zhenhai. Research on signal processing of polarization sensitive array[D]. Changsha: National University of Defense Technology, 2004. (in Chinese)
[6]徐友根,刘志文,龚晓峰,等.极化敏感阵列信号处理[M].北京:北京理工大学出版社,2013. Xu Yougen, Liu Zhiwen, Gong Xiaofeng, et al. Polarization sensitive array signal processing[M]. Beijing: Beijing Institute of Technology Press, 2013. (in Chinese)
[7]劉芳.基于极化敏感阵列的参数估计及波束形成算法研究[D].成都:电子科技大学,2015. Liu Fang. Research on parameter estimation and beamforming algorithms based on polarization sensitive array[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)
[8]陈善继,张锐戈,吴国庆,等.极化敏感阵列及其应用研究[J].现代电子技术,2009,32(5):53-56. Chen Shanji, Zhang Ruige, Wu Guoqing, et al. Research on the polarization sensitive array and its application[J]. Modern Electronics Technique, 2009, 32(5):53-56. (in Chinese)
[9]Li Jian,Compton R T.Two-dimensional angle and polarization estimation using the esprit algorithm[J]. IEEE Trans. AP,1992,40(5):550-555.
[10]Li Jian. Direction and polarization estimation using arrays with small loops and short dipoles [J]. IEEE Transactions on Antennas and Propagation,1993,41(3):379-387.
[11]Cheng Q,Hua Y. Performance analysis of the MUSIC and pencil-MUSIC algorithms for diversely polarized array [J]. IEEE Transactions on Signal Processing,1994,42(11):3150-3165.
[12]Weiss A J,Friedlander B. Direction finding for diversely polarized signals using polynomial rooting [J]. IEEE Transactions on Signal Processing,1993,41(5):1893-1905.
[13]王洪洋,王兰美,廖桂生.基于单矢量传感器的信号多参数估计方法[J].电波科学学报,2005,20(1):15-19. Wang Hongyang, Wang Lanmei, Liao Guisheng. Parameter estimation of multiple source based on uni vector-sensor[J]. Chinese Journal of Radio Science, 2005,20(1):15-19. (in Chinese)
[14]任生凯,周瑞青,周大卫,等.极化敏感阵列的空间谱估计测向技术研究[J].航天电子对抗,2016,32(1):31-34. Ren Shengkai, Zhou Ruiqing, Zhou Dawei, et al. Study on spatial spectrum DOA estimation technique for polarization sensitive array[J]. Aerospace Electronic Warfare, 2016, 32(1): 31-34. (in Chinese)
[15]吳迪军,徐振海,张亮,等.极化域空域联合匹配波束形成技术研究[J].电波科学学报, 2012(1):92-96. Wu Dijun, Xu Zhenhai, Zhang Liang, et al. Beamformer of polarized and spatial domains joint matching for polarization phased array radar[J]. Chinese Journal of Radio Science, 2012(1):92-96. (in Chinese)
[16]李纱,张裕峰.极化敏感阵列的到达角和极化参数联合估计方法[J].制导与引信,2016,37(4):48-53. Li Sha, Zhang Yufeng. Joint estimation method of DOA and polarization parameters for polarization sensitive array[J]. Guidance & Fuze, 2016,37(4):48-53. (in Chinese)
[17]张光义.相控阵雷达原理[M].北京:国防工业出版社, 2009. Zhang Guangyi. Phased array radar principle[M]. Beijing: National Defense Industry Press, 2009. (in Chinese)
[18]曾操,杨美娟,李世东,等.基于信源数估计的栅格偏移优化目标到达角估计方法,CN105334488A[P].2016-02-17. Zeng Cao, Yang Meijuan, Li Shidong, et al. A method of estimating target arrival angle with altering grid optimization based on source number estimation,CN105334488A[P].2016-02-17. (in Chinese)
[19]郭玉霞,张艳艳,邢金凤.基于量子粒子群算法的大型阵稀疏优化方法[J].航空科学技术,2020,31(8):57-62. Guo Yuxia, Zhang Yanyan, Xing Jinfeng. Sparse optimization of large array based on quantum particle swarm optimization [J]. Aeronautical Science & Technology, 2020,31(8):57-62. (in Chinese)
[20]景阳,范旭慧,梁军利.无须模板的阵列天线方向图综合设计方法[J].航空科学技术,2019,30(6):74-80. Jing Yang, Fan Xuhui, Liang Junli. Pattern synthesis design method of array antenna without template [J]. Aeronautical Science & Technology, 2019,30(6):74-80. (in Chinese)
(责任编辑陈东晓)
作者简介
杨美娟(1992-)女,硕士研究生,工程师。主要研究方向:极化敏感阵列信号处理。
Tel:15229029718E-mail:mjyang11@163.com
Weighted Fusion Angle Measurement Method Based on Polarization Sensitive Array
Yang Meijuan*,Li Wenlong
Chinese Flight Test Establishment,Xian 710089,China
Abstract: Angle estimation is the key function of radar. Polarization sensitive array used as radar antenna can effectively reduce model error and improve angle measurement performance. In order to improve the accuracy of target angle estimation, this paper proposes an extended weighted fusion angle measurement method. Firstly, the complete electromagnetic vector is introduced briefly, and the polarization-space signal processing model is established. Secondly, the extended weighted fusion angle measurement method is derived. Finally, combined with sparse restoration method, the effectiveness of the proposed method is verified by taking the biorthogonal electric dipole array antenna as an example. The results show that the error of array signal model is diminished by using the polarization information. And through the weighted fusion, the accuracy of target space angle estimation is effectively improved.
Key Words: electromagnetic vector; polarization sensitive array; weighted fusion; DOA estimation