APP下载

基于EuCl3·6H2O晶体的光存储*

2021-09-03李宗峰刘端程周宗权李传锋

物理学报 2021年16期
关键词:稀土晶体量子

李宗峰 刘端程 周宗权† 李传锋‡

1) (中国科学技术大学, 中国科学院量子信息重点实验室, 合肥 230026)

2) (中国科学技术大学, 中国科学院量子信息与量子科技创新研究院, 合肥 230026)

量子存储器是构建未来大规模量子网络的核心器件.由于具有超长的量子相干寿命, 稀土掺杂晶体逐渐成为最有希望实现实用量子存储的材料之一.然而掺杂晶体中不可避免的晶格畸变限制了该类材料的吸收深度和存储效率.纯稀土化合物晶体则同时满足了低晶格畸变和高稀土离子密度的需求, 有望实现高光存储效率.EuCl3·6H2O晶体是目前研究较多的一种纯稀土化合物晶体, 已经实现了低于超精细能级间距的光学非均匀展宽, 并且理论预测的自旋相干寿命可达1000 s, 是一种颇具潜力的量子存储材料.目前光存储或量子存储功能仅仅在稀土掺杂晶体中实现过, 尚无实验报道纯稀土化合物晶体中的光存储现象.本文报告了在EuCl3·6H2O晶体中实现了原子频率梳型光存储.通过降温法生长得到了EuCl3·6H2O单晶, 实验测得其7F0→5D0 跃迁相干时间为55.7 µs, 存储时间1 µs时的存储效率为1.71%, 展现了这种材料实现光量子存储的原理可行性.通过分析温度依赖的吸收线频率移动, 指出在这一材料中实现高效率光存储的主要挑战在于高效率的光谱烧孔.

1 引 言

构建大规模量子网络已成为当代量子信息科学的一个关键主题.由于光纤中指数级的光子损耗, 地面纠缠分发的距离当前被限制在百公里量级[1].为了实现远距离的纠缠分发和量子态传输,需要基于量子存储器和纠缠交换构建量子中继[2].到目前为止, 已有多种物理系统实现了量子存储功能, 具体包括气态原子系综[3-5]、单原子[6,7]、NV色心[8]和稀土掺杂晶体[9,10].由于稀土离子的 4 f 电子被外层 5s 和 5p 电子所屏蔽, 所以即使在固体中稀土离子仍然保持着近似自由离子的光谱特征和较长的相干时间.因此稀土掺杂晶体作为固态系统已在光存储及量子存储方面展现出诸多优势, 如长存储时间[11-13]、大存储带宽[14,15]、多模式存储[16-21]、可集成性[14,22-24]以及直接支持通信波段[25-27]等.

而稀土离子 4 f—4f 跃迁有着高相干时间的同时也伴随着与光场的弱相互作用.弱吸收导致的介质低吸收深度限制了稀土掺杂晶体的存储效率上限.而由于杂质稀土离子带来的晶格畸变导致了吸收线展宽的增加和光谱密度的降低, 因此通常不能直接增加稀土离子浓度来获得更高的吸收深度.当前基于稀土掺杂晶体的量子存储实验都使用浓度在0.1%以下的低掺杂晶体[10,24,28-30], 导致了晶体光学吸收深度在较低的1-10 cm-1量级.因此在当前众多的基于稀土掺杂晶体的存储演示实验中只有一个实现了超过50%的存储效率, 而且使用了长达2 cm的晶体并引入了侧面泵浦的复杂泵浦方案[10].

一个解决上述问题的思路是使用全浓度的纯稀土化合物晶体.其晶格环境纯净, 没有掺杂导致晶格畸变, 而且有着极高的光学密度.EuCl3·6H2O晶体是非均匀展宽最窄的稀土材料之一[31,32], 近年来, 有关该材料在量子信息中的应用已有一系列研究.Ahlefeldt等[33]已经在同位素提纯的Eu35Cl3·6H2O晶体中观察到7F0→5D0跃迁的非均匀展宽为25 MHz, 该非均匀展宽已经小于超精细能级间距.氘化后晶体(EuCl3·6D2O)的光学布居数寿命和光学相干时间分别达到了2.6 ms和740 µs[34],并且根据哈密顿量预测在特定的磁场大小和方向下, EuCl3·6H2O的超精细相干时间可以达到60 s,在氘化后有望达到1000 s[35].此外, 通过对EuCl3·6H2O晶体掺杂少量其他稀土离子, Ahlefeldt等[36]已经实现了该晶体内邻近Eu3+离子的受控光谱操纵, 展现出该晶体作为量子处理器的潜力.这些研究证明了该种材料在量子信息方面的诸多潜在应用, 然而至今仍没有在这一类纯稀土化合物晶体中观察到过光量子存储的现象.

本文在EuCl3·6H2O中实现了微秒量级的光信号存储.通过降温法晶体生长获得EuCl3·6H2O单晶, 使用光子回波方法测得了晶体7F0→5D0跃迁的相干时间为55.7 µs, 并基于原子频率梳(atomic frequency comb, AFC)这 一 量 子 存 储方案实现了经典光的存储, 其存储1 µs时的存储效率为1.71%.EuCl3·6H2O晶体在低温下7F0→5D0跃迁频率偏移量与温度的关系被定量地刻画出来.

2 实验内容及结果

EuCl3·6H2O是一种无色、易潮解、质地较软的晶体, 单晶几何外形为扁平的长六边形结构, 属于单斜晶系, 具有C2对称性.该晶体生长过程与我们近期报道的NdCl3·6H2O晶体生长方法一致[37].图1给出了实验用EuCl3·6H2O单晶, 厚度约2 mm.图中虚线内区域为存储实验所使用部分,晶体中心为生长初期籽晶附近的缺陷以及悬挂籽晶用的尼龙线.如图1所示, 晶体的C2轴为垂直于晶体通光面的方向.

图1 EuCl3·6H2O晶体, 厚度约2 mm, 虚线内为存储实验所用区域.晶体的三个轴向标示在示意图中, C2轴沿晶体的[010]的方向Fig.1.The EuCl3·6H2O crystal used in experiments, with the thickness of 2 mm.The dashed box indicates the area used in the experiment.Crystal’s axes are shown in the lower graph, with the C2 axis along [010] dirction.

2.1 7 F0→5D0 跃迁的相干时间测量

实验装置如图2所示.激光源为一台倍频的半导体激光器, 通过一个外部超稳参考腔实现频率稳定, 使其激光线宽小于10 kHz.晶体被置于温度为3.5 K的低温腔中, 后续实验均在低温腔的低震动时间周期内完成.一个双次通过的声光调制器(AOM 1)被置于样品前的光路中, 以实现光开关和频率移动效果.另一个单次通过的声光调制器(AOM 2)置于样品之后, 用作光开关以阻断强光进入后面的光电探测器(Thorlabs PDA10A).两个AOM由一个八通道任意波形发生器(HDAWG,Zuich Instruments)驱动.

图2 实验装置示意图.激光器输出的580 nm激光被一个声光调制器(AOM 1)所调制, 并入射到低温系统内的晶体样品(Crystal)上.输出光场被另一个声光调制器(AOM 2)所调制, 最终由探测器(PD)探测Fig.2.Illustration of the experimental setup.The 580 nm laser is modulated by an acousto-optic modulator (AOM 1)and injected into the crystal sample which is cooled down to 3.5 K by a cryostat.The output laser beam is controlled by another AOM (AOM 2) and finally detected by a photodiode (PD).

该实验使用的EuCl3·6H2O晶体的吸收深度高达1000 dB/cm量级, 当光沿C2轴方向传播时吸收深度最小[34].为了获得相对适中的吸收深度,实验中光场在晶体表面的入射角大约15° (也就是光场传播方向与C2轴夹角).激光聚焦在晶体上的光斑直径约为35 µm.在3.5 K温度下晶体中Eu3+离子的7F0→5D0跃迁频率为517.148 THz.

光学跃迁的相干时间通过光子回波方法测得.两个持续时间为2 µs, 功率密度为730 W/cm-2的光脉冲相继进入晶体.记第一脉冲进入晶体的时间为0时刻, 第二脉冲进入晶体的时刻为 τ /2 , 则在 τ时刻晶体将自发产生一同向光脉冲.实验中使用外差方法探测此回波脉冲.在 τ 时刻前后开启AOM 1,输入一束频率相差46.2 MHz的光脉冲, 则该脉冲与晶体自发产生的回波脉冲将形成拍频.将光电探测器的信号通过 ( 46.2±3)MHz 的带通滤波器后,送入锁相放大器, 从而解调出回波脉冲信号.实验测得回波脉冲幅度衰减如图3所示.对图中数据执行单指数拟合, 可以得到晶体中Eu3+离子的光学相干时间(T2)为 ( 55.7± 2.3) µs.此处测得相干时间略低于Ahlefeldt等[34]测得的77 µs.此处相干时间的差异可能是由于实际测量所处的频率位置不同(相差约1.05 GHz).

图3 EuCl3·6H2O晶体的光子回波幅度随时间的衰减曲线.拟合得到相干时间(T2)为(55.7 ± 2.3) µsFig.3.The decay curve of two-pulse photon echo amplitude with time in EuCl3·6H2O.The optical coherence time(T2) is (55.7 ± 2.3) µs by fitting the data to a single exponential decay.

2.2 原子频率梳存储

原子频率梳(AFC)存储方案是一种基于非均匀展宽调制的系综量子存储方案[38].AFC方案是目前稀土离子掺杂晶体中唯一可行的自旋波量子存储方案[17,29], 具有低噪声和多模式存储的优势.AFC方案通过使用特定频率的光泵浦样品, 使其吸收谱特定位置出现吸收减弱(即光谱烧孔技术),从而将样品的吸收谱被制备为由等频率间隔 Δ 的多个吸收峰构成的梳状频谱结构.当一个频率展宽小于AFC展宽的光子输入介质时, 该光子被该频率梳吸收, 此时离子系综态可以表示为

各离子的失谐量为 δj=mjΔ ( mj为整数).于是当时间达到 2 π/Δ 时, 各离子随时间演化的相位项e-iδjt将重新统一, 此时系综将自发形成回波脉冲.

图4(a)所示为153Eu3+离子在EuCl3·6H2O晶体中的7F0→5D0跃迁能级结构[33].中心频率为 f1,f2和 f3的三束激光分别与 g3→e3, g1→e2, g2→e3跃迁共振, 用来选择非均匀展宽中的一类离子, 称为类清空操作.三束激光的平均功率约8 mW, 扫频带宽为5 MHz, 持续300 ms.完成类 清 空 后,通过扫描 f2和 f3跃 迁(带 宽5 MHz, 持 续时间为220 ms), 使得该类离子的电子都处在 g3能级上,该步骤被称为自旋极化.类清空和自旋极化完成后, 使用并行制梳脉冲[19]在 g3→e3跃迁上制备带宽为5 MHz的频率梳结构.制梳过程使用的激光功率约5 mW, 持续时间共226 ms.

图4(b)为目标频率附近的光谱结构.跃迁 f2和 f3频率处的烧孔效果为类清空和自旋极化的结果, f1处为制得的频率梳结构.由于AFC存储效率受吸收深度影响, 因此选择偏离吸收中心以获得合适的吸收深度.光存储的效果如图5(a)所示, 黑色曲线为入射光脉冲, 红色曲线表示透射光脉冲和存储1 µs后的再发射脉冲.存储时间为1 µs时的效率为 ( 1.71± 0.04)%.AFC理论存储效率可由AFC结构参数计算得到[9]:

图4 (a) 153Eu3+离子能级结构; (b)在偏离中心频率位置上制备的AFC结构, 其频率中心为517.14873 THz, 插图为放大的AFC光谱结构Fig.4.(a) The energy diagram of 153Eu3+.Three beams with center frequency of f 1 , f 2 and f 3 are applied in a certain sequence to accomplish the spectral-hole burning for AFC preparation.(b) The prepared AFC structure with the center frequency is 517.14873 THz.Inset: enlarged view of the AFC structure.

其中F为梳精细度, d是吸收深度, d0是本底吸收深度.实验中AFC结构参数为 d =1.00±0.08 ,d0=0.17±0.05 , F =1/0.61 , 计算得到理论估计的AFC效率为 ( 1.75± 0.11)%, 与实验结果相符.通过调整泵浦控制的AFC梳间距可以改变AFC存储时间, 图5(b)进一步给出了AFC存储效率随存储时间的变化, 实际测得的最长存储时间为10 µs.

图5 (a) AFC光存储1 µs结果, 存储1 µs时的效率为 ( 1.71±0.04)% , 与根据图4(b)得到的AFC参数理论计算值(1.75±0.11)% 相符; (b)存储时间为0.5-10 µs时AFC存储效率变化, 由四次测量数据平均得到Fig.5.(a) The AFC memory with a storage time of 1 µs.The storage efficiency at 1 µs is ( 1.71±0.04)% , which agrees with the theoretical efficiency of ( 1.75±0.11)% , estimated from the AFC structure shown in Fig.4(b).(b) The storage efficiency with storage time from 0.5 µs to 10 µs.Each data point is averaged by four measurements.

3 7 F0→5D0 跃迁能级间距与温度的依赖关系

实验中烧孔效果不理想导致AFC存储效率不佳.一个可能的原因是烧孔过程中样品升温导致无法实现高效率烧孔.为了分析这一可能原因, 首先测定7F0→5D0跃迁的中心吸收频率与样品温度的依赖关系(图6).在最低工作温度(3.5 K)下, 吸收中心位于517.14812 THz.

图6 温度导致的 7 F0→5D0 跃迁频率偏移及理论拟合Fig.6.The line shift of 7 F0→5D0 depending on the sample temperature.The curve is fitted using two-phonon Raman-process model[39,40], giving α=(4.22±0.57)cm-1 and T D=(144.1±6.2)K for this crystal.

根据文献[39, 40], 跃迁频率随温度的变化是由于电子能级与热激发声子发生了耦合.对于单声子过程, 只有能级间距与声子能量匹配的跃迁被影响, 在本晶体中为7F0→7Fn的跃迁, 因此此处忽略.对于更高能级间距的跃迁, 可以考虑双声子拉曼过程模型[39].在该模型的描述下只存在两个自由参数: 耦合强度系数和等效德拜温度.等效德拜温度描述了参与相互作用的最大声子能量规模.在该模型下与温度相关的频率偏移量为

其中T为温度, TD为德拜温度, α 为声子耦合强度.使用 (3)式拟合结果如图6所示.拟合得到此晶体的耦合强度 α =(4.22±0.57)cm-1, 德拜温度 TD=(144.1±6.2)K .与Eu:YSO晶体相比[40],EuCl3·6H2O晶体有着更低的声子耦合强度和更低的德拜温度.(Eu:YSO中的两个site的数据为:α=50 , 90 cm-1; TD=420 , 570 K)

为理解各参数意义, (3)式在低温和高温下可以分别近似写成(误差小于5%)[40]:

可知 α 为描述频率偏移量随温度变化快慢的常量因子, 而 TD描述了频率偏移曲线的横向缩放.频率偏移量在低温下与温度为4次方关系, 在高于德拜温度时近似为线性关系.由于声子参与相互作用的模型不同, 这里拟合得到的德拜温度与描述热容的德拜温度并不相同[40].

实验中观察到持续扫频晶体吸收线将导致其频率整体偏移.使用功率约7 mW的光扫频200 MHz,持续几秒钟, 导致频率移动了0.5-1 GHz, 对应晶体的局域温度达到了25 K左右.如此明显的加热效应说明大范围扫频烧孔时大部分光能被晶体吸收, 部分通过非辐射跃迁转化为热能从而使晶体局域升温.局部升温后, 样品的自旋布居数寿命以及光学能级寿命都将受到显著影响从而限制了烧孔的实际效果.

4 结 论

本文实现了EuCl3·6H2O单晶的生长及光存储应用的初步实验探索.实验测得7F0→5D0跃迁的相干时间为55.7 µs, 在这个相干跃迁上基于原子频率梳方案实现了光信号的存储, 存储1 µs时的存储效率为1.71%.由于实验中未能实现理想的烧孔效果, 因此图4中AFC存在较高的本底吸收,导致了较低的存储效率.通过对晶体吸收线偏移与样品温度依赖关系的分析, 初步判定实验中用于泵浦烧孔的激光可能导致了样品的显著加热效应, 这可能为烧孔效果带来较为本质的限制.本文结果证明了利用纯稀土化合物晶体实现光量子存储原理的可行性, 同时也揭示了其中的一个核心技术难点, 即高效率的光谱烧孔制备.

猜你喜欢

稀土晶体量子
《量子电子学报》征稿简则
2021年11月中国稀土出口统计
2021年12月我国主要稀土产品平均价格
“辐射探测晶体”专题
决定未来的量子计算
稀土铈与铁和砷交互作用的研究进展
新量子通信线路保障网络安全
废弃稀土抛光粉的综合利用综述
一种简便的超声分散法制备碳量子点及表征