泥页岩有机质孔隙差异特征及影响因素分析
——以我国典型海相、陆相、过渡相储层为例
2021-08-31谷渊涛李晓霞万泉杨曙光
谷渊涛,李晓霞,万泉,杨曙光
1.河南工程学院资源与环境学院,郑州 451191
2.中国科学院地球化学研究所矿床地球化学国家重点实验室,贵阳 550081
0 引言
近年来随着非常规油气资源工业化勘探开发的快速发展,页岩油气对于能源领域的支撑作用越发重要[1]。与常规油气勘探中的生、储、盖、圈、运、保等核心要素不同,连续或准连续分布甜点区(段)是页岩油气地质学研究的核心,两者均受到沉积环境的控制[1]。有机质作为页岩油气的主要载体,其沉积富集过程与泥页岩沉积环境密切相关,其中发育的纳米孔隙是有机质向烃类转化的产物,对页岩油气资源富集有重要作用[2]。开展不同沉积相泥页岩中有机质孔隙特征研究可为页岩储层甜点区(段)优选提供重要理论支撑,丰富非常规油气沉积学的理论知识,以助力非常规油气资源的勘探开发。
目前关于泥页岩中有机质孔隙特征已有大量研究:1)演化过程极为复杂。部分学者认为有机质孔隙随热成熟度(Ro)的增加呈逐渐发育的趋势[3-5]。这主要基于有机质的热成熟过程伴随着干酪根热解、裂解以及液态烃裂解生气的进行,从而使有机质孔隙不断产生和演化[2,6]。也有观点认为泥页岩中有机质孔隙随热成熟度的增加呈现出阶段性特征[7-11]。例如,Curtiset al.[9]通过对Woodford页岩进行次生有机质孔隙的演化研究,发现有机质孔隙在热成熟度为0.51%~6.36%的范围内并无明显规律,说明仅热成熟度难以预测孔隙的发展趋势。Chenet al.[10]通过对低熟泥页岩的热模拟实验研究,发现在不同热演化阶段有机质孔隙发育特征有明显区别:Ro为0.6%~2.0%时,有机质孔隙度呈先下降后上升的趋势;Ro为2.0%~3.5%时,有机质孔隙持续发展;Ro>3.5%时,有机质孔隙发生破坏和转化。2)影响因素的差异性。有机质在热演化过程中向烃类转化而形成纳米孔隙,但演化过程中因各种因素差异性的影响,引起有机质孔隙的演化模式多种多样。因此,热成熟度并非影响有机质孔隙发育的唯一主导因素,其他因素在特定条件下对孔隙特征也有明显的制约。例如,Millikenet al.[12]认为总有机碳(TOC)含量对于有机质孔隙的控制比热成熟度更为明显:当TOC小于5.5%时,TOC与孔隙度呈正相关;当TOC大于5.5%时,TOC的增加对于孔隙度几乎没有影响。此外,TOC含量对于微孔、介孔、大孔的影响也有明显区别,多数研究表明微孔与TOC含量最为密切,其次为介孔[13-16]。有机质颗粒的大小也影响孔隙结构特征,颗粒越大越有利于孔隙的发育和生长,颗粒越小则抑制了孔隙的形成和演化[12]。有机质类型对于孔隙结构的影响也十分明显:I型和II型干酪根发育有机质孔隙的能力远远高于III型干酪根,这取决于各类型有机质的生烃潜力[6,17-18]。类似地,有机质显微组分因生烃潜力不同其发育有机质孔隙的能力也有差异,如腐泥组、镜质组往往比惰质组更发育孔隙[6,19-20]。除上述有机地球化学特征外,无机矿物、构造作用等也严重影响着有机质孔隙的演化进程。例如,黏土矿物与有机质的相互作用对生烃有一定的催化或抑制作用,从而促进或抑制孔隙的形成及演化[21-22];构造条件通过影响排烃过程而引起有机质孔隙发育特征的差异性[23-25]。
上述研究深入阐明了泥页岩中有机质孔隙的形成演化机理,并揭示了各因素在孔隙演化过程中的影响机制。然而,关于不同沉积相泥页岩有机质孔隙发育特征的影响因素仍无定论。本文在梳理前人关于有机质孔隙研究结果的基础上,以我国不同沉积相泥页岩储层(鄂尔多斯盆地延长组(T3y)陆相泥页岩、四川盆地东南缘龙马溪组(S1l)和牛蹄塘组(Є1n)海相泥页岩、南华北盆地山西组(P1s)过渡相泥页岩)为研究对象,系统表征了有机质孔隙发育特征,分析了各组储层影响有机质孔隙发育特征的主要因素,研究结果对页岩油气生储机制和勘探开发具有重要的理论和实践意义。
1 地质概况
鄂尔多斯盆地是属于构造稳定的大型沉积盆地,具有巨大的油气资源储量[26-27]。盆地包含六个构造单元:北部的伊盟隆起、南部的渭北隆起、西部的天环凹陷及西缘冲断带、东部的晋西挠褶带以及中部的伊陕斜坡[27-28]。盆地中延长组被证实是最具潜力的烃源岩,并被划分为10段。其中,在深湖—半深湖沉积环境下形成的长7段的岩性包括油页岩、黑色页岩和碳质页岩,长7段因含有丰富的有机质而成为最重要的烃源岩[29]。本研究所采集的延长组泥页岩样品取自伊陕斜坡东部(图1A),且全部来自长7段泥页岩。四川盆地是我国最大的含油气盆地,也是目前页岩气开采最成功的区域[30]。在四川盆地内部及周缘,志留系和寒武系富有机质页岩分布范围广、厚度大,并且经历了多旋回构造体系下的深埋藏和强改造过程,是页岩气勘探开发的重要目标层位[31-32]。其中龙马溪组和牛蹄塘组泥页岩是最具潜力的页岩气储层。本研究所选取的龙马溪组和牛蹄塘组样品均采自四川盆地东南缘的贵州省境内(图1B)。上古生界地层在华北地区分布十分广泛,南华北盆地的页岩气调查表明该区域海陆过渡相泥页岩具有一定的生储烃能力,是潜在的页岩气储层[33]。该盆地最具代表性的烃源岩是二叠系山西组和太原组[34]。本研究所选取的山西组样品采自太康隆起西部(图1C),紧邻中牟凹陷和中条—豫西隆起。
图1 研究区地质概况及取样位置Fig.1 Regional geology of the study area and sampling locations
沉积环境决定了泥页岩的有机质丰度、类型及显微组成[6],四组泥页岩样品因沉积环境差异形成了不同类型的有机质,进而影响泥页岩的生烃潜能。鄂尔多斯盆地延长组长7段在深湖—半深湖沉积环境下形成II型为主的干酪根,少量干酪根为III型;显微组分中腐泥组最发育,镜质组次之,惰质组最不发育[35]。四川盆地龙马溪组沉积于深水—浅水陆棚环境,有机质母源输入以各种浮游藻类为主,有机质类型以Ⅰ型为主,显微组分主要是镜质组(沥青),伴有少量腐泥组[6,20,36]。研究区内牛蹄塘组沉积环境与龙马溪组类似,为深水陆棚向浅水陆棚过渡的沉积相,主要有机质类型为Ⅰ型,显微组分以腐泥组和沥青为主[37]。南华北盆地山西组主要形成于三角洲体系的海陆过渡相环境,有机质类型主要为III型,少量为Ⅱ2型,显微组分以镜质组、惰质组为主[33,38-39]。
2 样品及研究方法
2.1 样品
本研究一共采集了四套地层共53个泥页岩样品。其中,13个延长组长7段样品采集于鄂尔多斯盆地941#采油井(取样点a),取样深度范围694.0~718.0 m(表1)。龙马溪组样品取自贵州习水县骑龙村剖面(取样点b),为避免风化作用的影响,我们利用绍尔便携式取样钻机采集浅层钻孔样品。该剖面将五峰—龙马溪组分为三段,其中第一段为典型的富有机质泥页岩,第一段又分为9小层,除第1小层为五峰组外,其余8层均为龙马溪组。我们依据这8小层的垂直厚度分别取样,共获取14个浅层钻孔岩心样品(表1)。牛蹄塘组14个泥页岩样品取自贵州开阳ZK105钻孔(取样点c),取样深度范围为656.8~717.8 m(表1)。山西组12个样品取自河南郑州ZK02109钻孔(取样点d),取样深度范围为139.0~222.7 m(表1)。
表1 泥页岩样品的物质组成特征Table 1 The material composition of the shale samples
2.2 总有机碳(TOC)
总有机碳(TOC)含量是根据GB/T 19145—2003《沉积岩中总有机碳的测定》进行分析测试的。称取0.5 g左右样品于烧杯中,缓慢加入过量的盐酸溶液(HCl∶H2O=1:7(体积比)),以去除样品中的无机碳;温度控制在60℃~80℃,溶样2 h以上至反应完全为止,要尽量保证样品在反应过程中没有溅出;反应完全后用去离子水洗涤,并在10 000 r/min的转速下离心沉淀,如此重复三次以去除氯离子;洗涤干净后的样品在60℃下烘干备用;使用河南工程学院分析测试中心的vario MACRO cube有机元素分析仪完成样品TOC含量测试。
2.3 热成熟度
根据前人关于热成熟度的研究,激光拉曼光谱是一种计算反射率的非常合适的方法[40-42]。我们采用河南工程学院分析测试中心的Renishaw Invia Reflex激光拉曼光谱仪来测试样品的成熟度。计算公式为[43]:R=0.0537d(G-D)-11.21,其中G、D、d分别指的是石墨碳、无序碳的峰位置以及G峰和D峰的间隔。由于在下古生界海相页岩中缺乏镜质体,因此利用沥青反射率来代表样品的热成熟度。镜质体反射率(Ro)和沥青反射率(Rb)的关系已获得较为成熟的研究,根据公式Ro=(Rb+0.244 3)/1.049 5进行热成熟度的换算[44]。
2.4 矿物成分分析
样品的矿物成分采用河南工程学院分析测试中心Bruker D8 ADVANCE X射线衍射仪进行测试分析。测试之前需将样品破碎并研磨至200目以下。扫描范围、步长分别为5°~80°、0.013°。参照石油天然气行业标准(SY/T)5163—2010进行半定量计算。
2.5 低压N2吸附
低压N2吸附实验采用河南工程学院分析测试中心的Quantachrome autosorb iQ全自动气体吸附分析仪完成。在吸附测试之前,将样品在150℃条件下脱气4 h以去除易挥发物质。样品的比表面积采用多点BET(Brunauer-Emmett-Teller)方法计算。
2.6 氩离子抛光—扫描电镜
为了获得平整表面,在扫描电镜观察之前采用Leica EM TIC 3X氩离子抛光仪对样品进行抛光。同时,对样品表面进行了喷金处理,使其具有导电性,然后采用中国科学院地球化学研究所月球与行星研究中心的FEI Scios FE-SEM进行表面形貌及成分分析,加速电压为20 kV。
3 结果与讨论
3.1 有机地球化学特征
四组泥页岩样品的有机地球化学特征见表1。其中,延长组样品TOC分布在0.4%~3.9%范围内,平均含量2.8%;该组样品Ro范围为0.7%~1.4%,平均1.1%,表明该组样品多为富有机质低熟泥页岩。龙马溪组泥页岩TOC分布范围为0.3%~5.5%,平均含量2.6%;Ro分布在2.5%~2.9%之间,平均2.8%。牛蹄塘组泥页岩TOC范围为0.3%~5.5%,平均含量2.2%;Ro范围为2.8%~3.3%,平均3.1%。龙马溪组和牛蹄塘组泥页岩由底至顶均表现出TOC逐渐降低的趋势,是由沉积环境的变化所引起,即从深水环境向浅水环境过渡[36,45]。山西组泥页岩TOC范围为0.5%~2.9%,平均含量1.6%;Ro范围为3.3%~3.6%,平均3.5%。该组样品垂向上TOC分布不均,这与海陆过渡相沉积环境有关。虽然该地层晚于龙马溪组和牛蹄塘组,但区域热事件造成了更高的热成熟度(>3.0%)[34,38]。
3.2 矿物组成
根据表1的矿物成分,以石英和长石、碳酸盐、黏土为三端元对比了这四组样品的矿物组成特征。如图2所示,延长组、龙马溪组和牛蹄塘组样品的主要矿物成分均为石英、黏土和长石,并含有少量的黄铁矿和碳酸盐矿物。相比于牛蹄塘组和延长组样品,龙马溪组泥页岩含有更高的石英和长石含量,代表了更高的脆性,可压裂性较好。另外,山西组泥页岩矿物组成差异性较大,这与沉积环境变化频繁关系密切,体现了海陆过渡相环境对矿物组成的重要影响。
图2 矿物组成三端元图Fig.2 Ternary diagram of the mineralogical constituents
3.3 孔隙参数特征
根据低压N2吸附,分别计算了各个样品的BET比表面积、孔体积、平均孔径,如表2所示。其中,延长组样品的比表面积范围为8.4~17.2 m2/g,平均11.5 m2/g;孔体积范围为0.050~0.088 cm3/g,平 均0.069 cm3/g;平均孔径范围为16.6~30.8 nm,平均24.4 nm。龙马溪组泥页岩的比表面积范围为21.6~36.5 m2/g,平均26.8 m2/g;孔体积范围为0.088~0.111 cm3/g,平均0.095 cm3/g;平均孔径范围为10.1~18.4 nm,平均14.4 nm。牛蹄塘组泥页岩的比表面积范围为15.5~32.0 m2/g,平均22.6 m2/g;孔体积范围为0.062~0.107 cm3/g,平均0.087 cm3/g;平均孔径范围为9.3~22.3 nm,平均16.4 nm。山西组样品的比表面积范围为8.0~15.5 m2/g,平均11.8 m2/g;孔体积范围为0.050~0.079 cm3/g,平均0.065 cm3/g;平均孔径范围为19.3~27.5 nm,平均22.3 nm。
表2 泥页岩样品的孔隙参数特征Table 2 Pore parameter characteristics of the shale samples
3.4 有机质孔隙发育特征差异
图3~6显示不同热成熟度泥页岩中的孔隙发育特征差异明显。延长组样品基本不发育有机质孔隙,但发育有较多的矿物粒间孔及微裂隙;有机质周围发育有较多微裂隙,对于烃类运移有重要作用(图3)。龙马溪组泥页岩有机质孔隙极为发育,多为大孔和介孔,且形态多样,主要以圆形、椭圆形、不规则的狭缝型为主(图4)。牛蹄塘组泥页岩中多数有机质颗粒无纳米孔隙,且有机质与矿物颗粒之间往往发育因成岩演化所形成的微裂隙[46-47];也有部分有机质发育介孔,多为圆形、椭圆形(图5)。这种有机质孔隙发育的非均质性与孔隙的排烃作用是否完全密切相关[12]。值得注意的是,龙马溪组和牛蹄塘组泥页岩中有机质—黏土复合体中发育有较多的纳米孔隙(图4d,e、图5d,f),且形态特征与有机质颗粒中的孔隙有一定差异,源于黏土层对孔隙的影响。山西组样品与延长组类似,有机质孔隙基本不发育(图6b,c),这与其III型干酪根生烃潜量较低(不易发育纳米孔隙)有密切关系[38];但明显可见部分有机质的塌陷(图6d~f),可使数个甚至数十个小孔转化为大孔,因此产生了较多数百纳米甚至微米级大孔,说明这部分有机质在演化过程中产生过较多的纳米级孔隙,之后由于过高的热演化程度导致有机质结构发生改变造成孔隙坍塌。
图3 延长组(T3y)泥页岩样品的微结构特征Fig.3 Microstructure characteristics of the T3y shale samples
图4 龙马溪组(S1l)泥页岩样品的微结构特征Fig.4 Microstructure characteristics of the S1l shale samples
图5 牛蹄塘组(Є1n)泥页岩样品的微结构特征Fig.5 Microstructure characteristics of theЄ1n shale samples
图6 山西组(P1s)泥页岩样品的微结构特征Fig.6 Microstructure characteristics of the P1s shale samples
根据TOC与孔隙参数的相关性分析(图7),可见有机质对于孔隙参数有重要影响,热演化程度不同两者之间的相关性也会发生明显改变。随着热成熟度的增加,比表面积与TOC先呈负相关,后呈明显的正相关,最后趋于无明显相关性;同时,平均孔径与TOC表现出正好相反的相关性变化规律,这表明有机质发生了从无孔到多孔再到消失的转化;而孔体积总体上与TOC的相关性较弱,这主要是因为孔体积是由与矿物相关的大孔所主导。另外,龙马溪组和牛蹄塘组样品的TOC与孔隙参数具有相似的相关性,只是牛蹄塘组的相关系数更大,并且牛蹄塘组样品的孔体积与TOC呈弱负相关,根据SEM观察分析有机质孔隙的收缩导致孔径减小,使得TOC与比表面积的正相关、与平均孔径的负相关都更为显著,而孔体积则随TOC增加而减小。TOC与孔隙参数的相关性变化趋势表明有机质在向烃类转化过程中所产生的孔隙演化过程十分复杂。结合SEM观察结果及前人的热模拟研究,尽管热演化是泥页岩中有机质孔隙形成、发展及转化或者消失的驱动力[10],但并非唯一影响因素。前人研究也表明有机质的热成熟过程既有新孔隙的产生,也伴随着孔隙被石油、沥青等填充以及孔隙之间的转化[48]。因此,为了探讨除热成熟度以外其他影响有机质孔隙发育特征的因素,我们依据对上述四组样品(延长组、龙马溪组、牛蹄塘组、山西组)大量的FE-SEM观察,通过定量统计分析来深入探讨有机质孔隙发育特征的主要影响因素。
图7 TOC与孔隙参数的相关性分析Fig.7 Correlation analysis between total organic carbon(TOC)and pore parameters
4 有机质孔隙特征的影响因素分析
四组泥页岩的热成熟度逐步递增表示其处于不同的热演化阶段,但由于沉积环境、构造背景及区域性特征差异,各组泥页岩储层在保存条件、矿物组成、有机质丰度、类型及显微组分等方面也存在明显不同,进而影响着泥页岩中有机质的生烃潜力和储集能力。因此,各组泥页岩中有机质孔隙发育特征必然受多重因素共同控制。通过对四组泥页岩样品的大量观察分析,本文分别论述了各演化阶段泥页岩中有机质孔隙发育的主要影响因素。
4.1 延长组
为更好地对比有机质孔隙发育的差异性,我们利用Image J软件根据灰度差异对发育纳米孔隙的有机质进行了孔隙的定量统计分析。依据延长组泥页岩FE-SEM图像发现大多数有机质无孔隙发育(图3),少量有机质发育有大孔、介孔,甚至微孔(图8)(FE-SEM的分辨率不足以识别)。针对同一区域的有机质孔隙,定量统计发现孔隙发育特征有明显差异:如图8A所示,区域a中纳米孔隙的孔径(78 nm)是区域b(47 nm)的近两倍,而另一个样品中的有机质孔隙孔径只有5 nm(表3)。由此可见,对于延长组样品,既存在不发育孔隙的有机质,也存在孔径差异较大的有机质孔隙。
表3 图8中三个区域的孔隙统计分析Table 3 Pore statistical analysis for the three regions in Fig.8
图8 延长组泥页岩中有机质孔隙发育特征对比分析Fig.8 Comparison of organic matter(OM)pore development in T3y shales
结合前人研究,不同类型有机质的生烃能力、生烃时限有明显差异。根据干酪根显微组分比例,一般将有机质分为I型、II1型、II2型、III型。I型和II型干酪根发育有机质孔隙的潜力远高于III型。这是由于I型和II型干酪根具有比III型更好的生烃潜力[6,17-18]。延长组热演化程度相对较低,此时干酪根类型及显微组分对于孔隙产生的时间有重要影响。易于生烃的组分往往更早地产生孔隙,而生烃较晚或生烃能力较弱的组分则难以形成有机质孔隙。例如腐泥组和镜质组往往比惰质组具有更好的生烃潜能,因此也更易产生孔隙[6,20,38]。延长组泥页岩中有机质孔隙发育特征的非均质性说明孔隙产生的时间差异明显,表明其正处于有机质孔隙的形成阶段,有机质类型及显微组分对于有机质孔隙的发育有主导作用。
4.2 龙马溪组
泥页岩热演化达到一定程度时,生烃潜能较高的有机质(如I型)大量生烃会形成丰富的纳米孔隙,并且随着生烃过程的进行,孔隙结构也会随之发生改变。龙马溪组泥页岩I型有机质占主导地位,普遍发育纳米孔隙。通过对有机质孔隙进行统计分析发现,有机—无机相互作用严重影响着有机质孔隙的结构特征。根据无机矿物组分特征,可将有机—无机作用进一步划分为有机质—脆性矿物相互作用和有机质—黏土矿物相互作用。由于有机质对应力的抵抗性较弱,有机质与脆性矿物的接触往往造成有机质发生一定程度的变形[49]。如图9所示,当有机质处于挤压环境时,孔隙发育较少且孔径很小,且沿矿物颗粒边缘孔隙展现出定向分布的特征;当远离应力来源的矿物颗粒时,压应力减弱,孔隙逐渐发育,且孔径变大。而当有机质颗粒处于拉张环境时,孔隙往往更为发育且孔径更大。造成这种现象的原因主要有两个:一是有机质生烃反应是一个体积增大的反应,根据化学平衡原理,压力增大使生烃反应受到抑制,从而延迟有机质的成熟进程[50];二是在孔隙产生后,脆性矿物对有机质颗粒的挤压造成垂直应力方向孔宽减小,易于形成定向排列,而拉张环境则更利于孔隙的生长[49]。
图9 应力条件对有机质孔隙发育的影响Fig.9 Influence of stress conditions on OM pore development
泥页岩中部分可溶有机质可与黏土矿物相互作用形成复合体,其对有机质的聚集、沉积、保存均有重要作用,是烃源岩中油气生成的一种天然母质。有机质和黏土矿物的结合过程既有矿物的转化(如蒙脱石的伊利石化),也伴随着有机质的生烃,因此有机质—黏土复合体中的有机质孔隙具有比颗粒有机质孔隙更为复杂的演化过程。通过对比相同区域有机质—黏土复合体和颗粒有机质中的孔隙大小(图10),发现颗粒有机质孔隙(29 nm和30 nm)比复合体中的孔隙(21 nm和23 nm)更大(表4)。分析认为该阶段有机质—黏土复合体对于孔隙的发育起到一定的抑制作用,限制了孔隙的生长。这是因为在热演化过程中,有机质—黏土复合体中的黏土层通过隔绝或吸收外部温压而抑制有机质的热演化。泥页岩中蒙脱石的伊利石化与干酪根生油的埋深和温度范围一致[51-52],且随着热演化程度的增加,混层矿物(伊蒙混层)中伊利石的含量逐渐增加[50,53-54],表明在这个过程中蒙脱石可吸收部分温压而发生矿物转化,进而对内部有机质形成保护,不利于有机质的热演化和孔隙生长。另外黏土层之间的狭小空间及微小的有机质颗粒也不利于纳米孔隙的生长[12]。
表4 图10中四个区域的孔隙统计分析Table 4 Pore statistical analysis for the four regions in Fig.10
图10 龙马溪组泥页岩颗粒有机质和有机质—黏土复合体中纳米孔隙对比分析Fig.10 Comparison of nanopores in discrete OM and organic⁃clay composites for S1l shales
综合上述分析,龙马溪组泥页岩处于有机质孔隙发育的高峰阶段,有机—无机相互作用制约着有机质孔隙的形貌和结构特征,主要体现在两个方面:脆性矿物对有机质颗粒所形成的应力作用和有机质—黏土复合体对孔隙生长的抑制作用。
4.3 牛蹄塘组
泥页岩达到生烃高峰后,排烃作用开始占据主导地位,有机质孔隙中烃类的逸散加剧了这一进程[12]。相比于龙马溪组,牛蹄塘组泥页岩排烃作用更为完全,有机质孔隙因地层应力较大更易被压实甚至消失[46-47]。微裂隙(成岩裂隙或构造成因裂隙)作为排烃作用的主要通道,能够有效增加有机质孔隙的连通性,从而促进烃类逸散[55]。如图11所示,相同区域的有机质颗粒孔隙发育差异明显,A图因周围微裂隙的发育造成有机质孔隙中烃类散失,使得孔隙内部压力降低,在地层压力作用下而被压实;D图则因无微裂隙发育,孔隙仍然保持着内部压力而免于被压实。
此外,需要注意的是,牛蹄塘组泥页岩中的有机质—黏土复合体也发育有大量的纳米孔隙,并且复合体周围是否存在微裂隙对孔隙发育几乎没有影响。通过对比统计分析有机质—黏土复合体和颗粒有机质中的孔隙大小(图11C~F),发现两种形态的有机质孔隙孔径较为一致(表5)。结合龙马溪组泥页岩中两种形态有机质中的孔隙分析,表明一方面牛蹄塘组中的颗粒有机质孔隙可能因压实作用而使孔径减小甚至消失,另一方面有机质—黏土复合体对孔隙有保护作用,分析认为在孔隙的发育过程中因黏土层的隔绝作用而降低了孔隙连通性,使有机质孔隙不会因为失去内部压力而被压实。另外,有机质—黏土复合体的结构特征也对孔隙有一定的保护作用,主要体现在:1)黏土层之间的表面张力。由于黏土矿物层之间相互连接,两个黏土层之间一般为几个纳米到上百纳米,使得层间的表面张力能够对有机质形成强有力的吸附,从而使有机质不会因热演化而收缩[56-57]。2)有机质—黏土复合体的结构稳定性。对于应力作用,复合体具有比颗粒有机质更强的抵抗能力[58],这进一步保护了复合体中的孔隙不被压实。
表5 图11中四个区域的孔隙统计分析Table 5 Pore statistical analysis for the four regions in Fig.11
图11 牛蹄塘组泥页岩颗粒有机质中孔隙发育的差异性及其与有机质—黏土复合体中纳米孔隙的对比分析Fig.11 The difference of pore development in discrete OM and the comparison with pores in organic⁃clay composites forЄ1n shales
综上所述,牛蹄塘组泥页岩处于有机质孔隙的收缩阶段,颗粒有机质周围微裂隙的发育情况(或保存条件)决定着孔隙的发育。该阶段有机质—黏土相互作用在一定程度上抑制了孔隙的收缩,也是孔隙发育的主要影响因素。
4.4 山西组
豫西地区上古生界二叠系烃源岩热成熟度普遍过高,可能与区域热事件有关[33,38]。该地区大规模的热事件所形成的过高的地温促使豫西地区烃源岩快速达到过高成熟阶段,并生成终极产物CH4。山西组过高的热演化程度虽能使该地区干酪根充分反应成烃,但由于有机质类型主要为III型,生烃潜能较差[38,59],产生有机质孔隙的能力十分有限。另外,该区域烃源岩生气高峰的时代以中侏罗世为主,三叠纪和白垩纪次之,明显早于南方龙马溪组海相页岩气古近纪的生气高峰[33]。生气高峰时间越早,越不利于页岩气的保存。豫西地区野外露头剖面和钻井地层中发育了大量的裂隙和断层,FE-SEM也观察到微裂隙十分发育(图6a~c)。这既有可能是生烃作用产生的不规则裂隙,也可能是后期构造作用形成的规则破裂,但无论成因如何都可促使烃类的逸散[33,38]。因此即使在热成熟过程中产生了有机质孔隙,也会在后期因保存条件差使有机质孔隙被逐渐压实而消失。
此外,山西组过高的热演化程度也可能引起部分有机质发生变质或结构塌陷(图6d~f)。前人关于高演化阶段有机质的力学性能研究表明有机质的杨氏模量值与化学结构参数之间存在良好的正相关性,说明有机质表面微观力学性能受控于其内部化学结构,有机质的微观力学性能可影响其在生气阶段生成并保留纳米孔隙的能力[60]。也就是说,随着热成熟度的持续增加,部分有机质达到变质期,其固体干酪根和焦沥青的物理化学性质均趋近于石墨,导致其有机质内部不发育孔隙[8]。另一方面,有机质从粘弹态演变为玻璃态,产生的气态烃无法保留形成孔隙,内部生成的纳米孔隙不断坍塌、合并[60],最终使得有机质孔隙转化形成大孔甚至微米级孔隙或者消失。综上,我们认为山西组泥页岩处于有机质孔隙的转化和消失阶段,保存条件和有机质类型及结构是该组泥页岩有机质孔隙发育情况的主要影响因素。
5 结论
(1)延长组泥页岩基本不发育有机质孔隙,但发育有较多的矿物粒间孔及微裂隙;龙马溪组泥页岩有机质孔隙极为发育,多为大孔和介孔,且形态多样;牛蹄塘组泥页岩中多数有机质不发育纳米孔隙,部分有机质发育介孔,这种有机质孔隙发育的非均质性可能与孔隙的排烃作用是否完全有关。山西组泥页岩部分有机质不发育孔隙,部分有机质有明显结构塌陷,可能发生了孔隙的转化。
(2)随着热成熟度的增加,孔隙参数特征与TOC的相关性有明显变化:比表面积与TOC先呈负相关,后呈明显地正相关,最后趋于无明显相关性;平均孔径与TOC表现出正好相反的相关性变化规律;而孔体积总体上与TOC的相关性较弱,可能是因为孔体积是由与矿物相关的大孔所主导。这种相关性变化体现了不同演化阶段有机质对于孔隙的贡献有明显差异。造成这种差异的因素除热成熟度外,还有其他因素,如有机质类型及显微组分、有机—无机相互作用及保存条件等。
(3)四组泥页岩储层分别处于有机质孔隙演化的四个阶段:形成阶段、高峰阶段、收缩阶段、转化和消失阶段,各阶段孔隙发育特征的主导因素不同。延长组陆相泥页岩处于有机质孔隙形成阶段,有机质类型及显微组分主导着有机质孔隙的发育;龙马溪组海相泥页岩处于有机质孔隙发育高峰阶段,有机—无机相互作用制约着有机质孔隙的形貌和结构特征;牛蹄塘组海相泥页岩处于有机质孔隙收缩阶段,颗粒有机质周围微裂隙和有机质—黏土复合体的发育情况决定着孔隙的发育特征;山西组海陆过渡相泥页岩处于有机质孔隙的转化和消失阶段,有机质孔隙是否发育以及形态特征受制于保存条件和有机质类型及结构。
致谢 感谢编辑部和审稿专家在修改过程中给予的建议和帮助;感谢河南省国土资源科学研究院谷德敏等专家在采样过程中的帮助。