APP下载

柴达木盆地北缘黄绿山奥长花岗斑岩成因及其地球动力学意义

2021-07-28卢寅花王力张国峰

地质论评 2021年4期
关键词:黄绿造山图解

卢寅花,王力,张国峰

1)吉林大学地球科学学院,长春,130061; 2)吉林省第一地质调查所,长春,130061

内容提要:黄绿山地区位于柴达木盆地北缘造山带西段,区内花岗岩广泛分布,相对匮乏同位素的研究成果以及岩浆活动和变质作用的地质记录。本文对前人在地质填图中认为原属于华力西期的奥长花岗斑岩侵入体进行岩相学、年代学、地球化学和全岩Sr-Nd同位素研究,探讨其成因类型和源区,并在此基础上讨论了其地球动力学意义。LA-ICP-MS锆石U-Pb定年结果显示,黄绿山奥长花岗斑岩结晶时代为466±3 Ma,为加里东期中奥陶世的产物。样品具有高SiO2和Na2O,低K2O的特点;在SiO2—K2O图解上,除一个样品落入钙碱性区域之外,其余样品全部落入低钾拉斑系列。样品具有右倾的稀土分配特点((La/Yb)N介于4.41~10.01),具有微弱的Eu异常(0.94~1.09)。样品具有较低的10000Ga/Al(<2.6)以及极低的P2O5(平均为0.06%),说明黄绿山奥长花岗斑岩为I型花岗岩;结合其中元古代的Nd二阶段模式年龄(1.03~1.21 Ga),认为黄绿山奥长花岗斑岩为中元古代下地壳再活化部分熔融的产物。在花岗岩构造图解上,样品落入VAG区域,显示其与洋壳俯冲具有密切的联系,结合其与奥陶系滩间山群的伴生关系和具有喜马拉雅型花岗岩的特征,因此认为黄绿山奥长花岗斑岩产于与洋壳俯冲相关的弧后盆地环境中;弧后盆地的存在暗示洋壳俯冲仍未结束,地体碰撞尚未开始,因此柴达木盆地北缘洋盆至少在466 Ma仍未关闭。

造山岩浆活动能记录一些重要的地球动力学过程所经历的时间与性质,如俯冲、板片断离和岩石圈拆沉。因此,通过对这些岩浆岩的时空分布、岩石构造结构组合和变异特征的研究,可以重建出造山带的古地球动力学演化和岩石圈活化改造的过程。位于青藏高原北缘的阿尔金—祁连—柴北缘早古生代造山系是原特提斯构造域最北部的构造拼合体,该拼合体被认为是原特提斯洋俯冲—增生—闭合以及碰撞作用的产物(Sengör and Natal’ in, 1996; Pan Guitang et al., 2012),其中柴达木盆地北缘(柴北缘)造山带中发育典型的超高压变质带(Zhang Guibin et al., 2008, 2009, 2014;Yu Shengyao et al., 2015a),在折返的变质地体中的泥质片麻岩(杨经绥等,2001)和榴辉岩(Zhang Jianxin et al.,2010)中均发现柯石英,表明同碰撞过程中大陆地壳向地幔深处俯冲的造山过程。造山作用的不同阶段伴随着岩浆作用,具有反映各种地球动力学背景特征的地球化学特征,如俯冲相关弧岩浆、同碰撞岩浆和碰撞后岩浆。而以往对柴北缘造山带岩浆作用的研究主要集中在俯冲相关的弧岩浆作用和碰撞后岩浆作用,分别跟踪原特提斯洋岩石圈的长期俯冲(Wu Cailai et al., 2014,2019;康珍等,2015)和大陆俯冲后深俯冲地壳的剥露(Yu Shengyao et al.,2015a,Wu Cailai et al.,2019)。然而,俯冲到碰撞转换期岩浆作用很少受到关注,反应在柴北缘造山带在470~450 Ma期间的岩浆活动报道记录较为稀少(Wu Cailai et al., 2019),但这些岩石提供了大洋板片俯冲末期到碰撞初期壳幔相互作用过程的关键信息,可以记录从大洋俯冲到大陆俯冲的构造转变。因此,从原特提斯洋板片俯冲到柴达木陆块俯冲的时间和详细的地球动力学过程仍然不清楚。此外,由于柴北缘造山带中发育典型的超高压变质带,因此前人研究成果主要聚焦于其中的榴辉岩及其变质围岩上(Chen Danling et al., 2009; Mattinson et al., 2007, 2009),而对本区的岩浆活动研究则较为薄弱,与区域上广泛分布的花岗质侵入体数量比,现有的年代学研究稍显薄弱(吴才来等, 2001a, 2001b),尤其是放射性同位素研究成果较为匮乏,模糊了对柴北缘地区岩浆作用和地壳生长和改造过程的认识;这些前人研究成果中存在局限性都限制了柴北缘造山带古地球动力学演化过程的重建。黄绿山奥长花岗斑岩侵入体位于柴北缘造山带西部,岩体产于高压—超高压地质体之外,侵位于未变形的浅变质奥陶系地层中,推测为原地的产物,可以为本区动力学背景提供良好的制约;并且该岩体的地质年代学和地球化学研究尚属空白,因此本文对柴北缘滩间山地区的黄绿山奥长花岗斑岩进行岩相学和地质年代学,以及全岩主微量和全岩Sr-Nd同位素的研究,准确厘定了其结晶时代并探讨其源区属性,在此基础上对还原其地球动力学背景也具有一定的指示意义。

1 区域地质背景及样品描述

1.1 区域地质背景

柴北缘造山带位于青藏高原北缘,该带沿西北—东南延伸约800 km,西部以阿尔金走滑断层为界,东部以瓦洪山—温泉断层为界。北西向的鱼卡—乌兰断裂将其分为南部和北部两个地质特征明显不同的构造单元(图1;陆松年等,2004),其中北部构造单元为欧龙布鲁克微陆块,沿乌兰—德令哈—欧龙布鲁克—全吉山—达肯达坂山一线地区呈北西西向分布,由古元古代至中元古代变质基底和新元古代至新生代沉积盖层组成,变质基底包括德令哈杂岩、达肯大坂岩群和万洞沟群。南部构造单元是一个早古生代俯冲—碰撞造山带,即柴北缘造山带(从都兰北部的沙柳河—野马滩一带,向西北延伸至锡铁山、绿梁山和赛什腾山一带)由含榴辉岩的花岗质片麻岩以及早古生代滩间山群岛弧火山岩构成(陆松年等,2004;王慧初等,2006)。区域地质填图表明,带内地层主要为奥陶系滩间山群的海相火山沉积岩。

图1 柴北缘造山带区域构造地质图(据Wang Xiaoxia et al., 2015修改)Fig. 1 Geological map showing the regional structures of the North Qaidam Orogenic Belt (modified after Wang Xiaoxia et al., 2015)

黄绿山地区位于柴北缘造山带的西北部(图1),大柴旦镇北西约92.5 km处。区内奥陶系滩间山群依据岩性组合可分为两个岩组,下岩组为灰白、灰绿色变粒岩、绿泥片岩、千枚岩夹白云石大理岩、英安岩以及砂屑生物灰岩等;上岩组为变安山质晶屑凝灰岩、变安山岩、变英安岩等,是一套类岛弧火山岩建造。黄绿山奥长花岗斑岩以岩株的形式侵位于古生界奥陶系滩间山群下岩组地层中。本区出露的岩浆岩主要为花岗岩类和辉长岩类(图2)。

图2 柴达木盆地北缘黄绿山及邻区地质简图(据青海省地质矿产勘查局,1991修改)Fig. 2 Geological sketch map of Huanglvshan area and surrounding area, northern margin of the Qaidam Basin (modified from Bureau of Geology and Mineral Resources of Qinghai Province, 1991#)

1.2 样品描述

本次分析的样品均集中采自黄绿山岩体,取样位置为:N38°15′34″、E94°31′37″。岩石样品呈灰白色,斑状结构,块状构造,由基质(约65%)和斑晶(约35%)两部分组成;斑晶主要为斜长石(0.5~1.5 mm,含量约15%),石英(0.3~1 mm,含量约15%),正长石(0.3~1 mm,含量约5%)。基质则主要由长石,石英和黑云母细小晶体组成(图3)。样品发育有微弱的绢云母化和高岭土化。

2 分析方法

2.1 锆石LA-ICP-MS年代学

本次研究所用的样品破碎与锆石挑选在河北省廊坊区域地质调查研究所实验室完成,锆石制靶、反射光、阴极发光图像在中国科学院地质与地球物理研究所完成。LA-ICP-MS锆石U-Pb年代学测试在吉林大学东北亚矿产资源评价国土资源部重点实验室完成。激光剥蚀使用德国相干公司(Coherent)COMPExPro型ArF准分子激光器,质谱仪为美国安捷伦公司7500A型四极杆等离子质谱。本次测试激光束斑直径32 μm,激光能量密度10 J/cm2,剥蚀频率8 Hz。通过标准锆石91500(1062 Ma)作为外标进行同位素比值校正,标准锆石PLE/GJ-1/Qing Hu为监控盲样。元素含量选用国际标样NIST610为外标,Si为内标元素进行计算,NIST612和NIST614为监控盲样。使用Glitter软件进行同位素比值及元素含量的计算。谐和年龄及图像使用Isoplot/Ex(3.0)给出。普通铅校正使用Anderson(2002)给出的程序方法计算。

2.2 岩石地球化学测试

样品的主量元素和微量元素是在吉林大学测试实验中心测定。采用X—射线荧光光谱仪测定主量元素,相对标准偏差为2%~5%。微量元素和稀土元素分析则是采用美国安捷伦科技有限公司的Agilent 7500A型耦合等离子体质谱仪测试(Z/T0223-2001),样品的测试均经过国际标样BHVO-2、BCR-2和国家标样GBW07103、GBW07104监控,微量元素和稀土元素的分析精度为:元素含量大于10×10-6的绝对误差小于5%,元素含量小于10×10-6的绝对误差小于10%。

2.3 Sr—Nd同位素测定

Sr-Nd同位素测试在核工业北京地质研究院分析测试研究中心完成,测试方法为TIMS,测试仪器型号为ISOPROBE-T,参照GB/T16272-1999,实验过程中相对湿度为50%,温度为20℃,同位素误差以2σ计算。其中Sr同位素分析采用ISOPROBE-T热电离质谱计,采用单带M+,可调多法拉第接收器接收。质量分馏用n(86Sr)/n(88Sr)=0.1194校正,标准测量结果:NBS987为0.710250±0.000007实验室流程本底:Rb=0.2 ng/g,Sr=0.2 ng/g。Nd同位素分析采用ISOPROBE-T热电离质谱计,采用三带M+,可调多法拉第接收器接收。质量分馏用n(146Nd)/n(144Nd)=0.7219校正,标准测量结果:JMC为n(143Nd)/n(144Nd)=0.512109±0.000003,全流程本底Sm-Nd小于50 ng。

3 分析结果

3.1 锆石LA-ICP-MS年代学

HLS-TC2-N2样品来自黄绿山奥长花岗斑岩。样品中挑选的锆石呈无色透明、金刚光泽,锆石颗粒为近等轴粒状,长宽比介于1:1到1.5:1之间(图4)。阴极发光(CL)图像显示,大多数锆石晶体呈现典型的岩浆锆石振荡环带(Pidgeon et al., 1998; Corfu et al., 2003)。23个分析点测试结果显示Th的含量为358×10-6~1457×10-6,U的含量为557×10-6~1268×10-6,Th/U为0.39~1.15(>0.1),具有岩浆锆石特征(Weaver, 1991)(表1)。n(207Pb)/n(235U )—n(206Pb)/n(238U)图解显示,锆石测点均落在谐和线之上(图5a),23个锆石测点得出的U-Pb年龄介于461~467 Ma之间,加权平均年龄为466±3 Ma (MSWD=0.055,n=23)(图5b),因此,该年龄代表了奥长花岗斑岩的结晶时代。

图4 柴北缘黄绿山奥长花岗斑岩锆石形态及阴极发光CL图像Fig. 4 Cathodoluminescence (CL) images of zircons from oligoclase granite porphyry in Qaidam

图5 柴北缘黄绿山奥长花岗斑岩锆石U-Pb年龄谐和图Fig. 5 Zircons U-Pb age concordia diagram of oligoclase granite porphyry in Qaidam

3.2 地球化学特征3.2.1 主量元素

岩石分析结果及特征值见表(表2):样品具有高SiO2(73.29%~74.37%)和高Na2O(4.81%~5.75%),低K2O(0.67%~1.73%),MgO(0.75%~1.27%),TFeO(1.79%~2.33%)和Al2O3含量(11.59%~13.69%)的特点;全碱含量ALK=5.75%~6.77%,平均值为6.53%;样品具有变化较大的Mg#(38.6~54.4)和A/CNK(0.84~1.24)。样品在TAS图解上落入花岗岩区域(图6a),在An—Ab—Or图解上落入奥长花岗岩区域(图6b),在SiO2—K2O图解上主要落入低钾拉斑系列(图6c),在A/CNK—A/NK图解上,样品主要呈现过铝质的特征,其中具有较高烧失量的样品落入准铝质,推测为后期热液蚀变作用形成(图6d)。

表2 柴北缘黄绿山奥长花岗斑岩主量元素(%)、微量元素(×10-6)和稀土元素(×10-6)含量及相关参数Table 2 Major elements (%),trace element (×10-6) and rare earth elements (×10-6) contents of oligoclase granite porphyry in Qaidam

图6 岩石TAS图解(a,据Irvine and Baragar,1971)和岩石An—Ab—Or图解(b,据O’Connor,1965)和岩石 K2O—SiO2图解(c,据Peccerillo and Taylor,1976)和岩石A/CNK—A/NK图解(d,据Maniar and Piccoli,1989)Fig. 6 Plots of TAS (a, after Irvine and Baragar, 1971), plots of An—Ab—Or (b, after O’Connor, 1965), plots of K2O—SiO2 (c, after Peccerillo and Taylor, 1976) and plots of A/CNK—A/NK (d, after Maniar and Piccoli, 1989)

3.2.2 微量元素

黄绿山奥长花岗斑岩样品稀土含量较低(ΣREE介于44.01×10-6~67.27×10-6;具有明显右倾的稀土分配特征(图7a),(La/Yb)N介于4.41~10.01,LREE/HREE介于6.08~9.06范围内;样品Eu异常不明显,δEu值介于0.94~1.09。

样品在微量元素蛛网图上显示:相较于原始地幔,其具有富集大离子亲石元素 (如Rb、Ba、K等)的特点。相对亏损部分高场强元素Nb、Ta、Ti、P等(图7b)。

3.3 Sr-Nd同位素

全岩Sr-Nd同位素数据分析结果见表3,并绘制在图8中。初始n(87Sr)/n(86Sr)和εNd(t)值使用465 Ma的锆石U-Pb年龄计算,全岩初始Sr比值[n(87Sr)/n(86Sr)]i=0.70212~0.70461,εNd(t)为-0.1~2.1,利用二阶段模式(Liew and Hofmann,1988)计算出Nd同位素年龄(TDM2)也相对均一,范围介于1.03~1.21 Ga。黄绿山奥长花岗斑岩样品的Sr-Nd同位素组成均匀,与同时代的团鱼山I型花岗岩 (Wu Cailai et al., 2009) 较为相似,明显高于大柴旦的S型花岗岩(吴才来等,2007)(图8)。

表3 柴北缘黄绿山奥长花岗斑岩Sr-Nd同位素组成Table 3 Sr-Nd isotopic compositions of oligoclase granite porphyry in North Qaidam

4 讨论

4.1 成因岩石学

样品烧失量LOI在1.40到2.65之间,平均值为1.70,最大值不超过3%,暗示了热液蚀变对样品成分影响影响有限,并且样品在稀土球粒陨石标准化图解和微量元素蛛网图上的曲线都近似平行(图7a,b),进一步说明这些样品可以用来讨论岩石成因。

图7 柴北缘黄绿山奥长花岗斑岩稀土元素球粒陨石标准化配分图(a,标准化值据Boynton,1984)和 奥长花岗斑岩微量元素原始地幔标准化蛛网图(b,标准化值据Sun and Mcdonough,1989)Fig. 7 Chondrite-normalized REE patterns (a, normalizing values are from Boynton, 1984) and primitive mantle (PM)-normalized trace element spider diagrams (b, normalizing values are from Sun and McDonough, 1989) for oligoclase granite porphyry in Qaidam

花岗岩类按其源区和地球化学特征传统上分为 I型、S型或A型(Chappell, 1974)。样品具有低的10000Ga/Al(1.01~1.34,<2.6),Zr+Nb+Ce+Y(<350×10-6),锆饱和温度(TZr介于722~760 ℃,<800℃)以及铕异常,这些特征与A型花岗岩的特征不相符,因此黄绿山奥长花岗斑岩不属于A型花岗岩。黄绿山奥长花岗斑岩在10000Ga/Al—Zr和10000Ga/Al—CaO/(K2O+Na2O)图解上落入I和S型花岗岩区域(图9a、b),因此黄绿山奥长花岗斑岩应属于I或S型花岗岩。磷灰石在S型花岗岩中溶解度极高,因此会随着结晶分异的进行,S型花岗岩P2O5会逐渐升高(Chappell, 1999; Chappell and White, 2001),这与样品P2O5含量(平均0.06%)极低的特点并不一致;此外,样品具有相对较低的[n(87Sr)/n(86Sr)]i和正的εNd(t),与柴北缘造山带老基底岩石来源的大柴旦S型花岗岩相距甚远(图8),因此其不可能来源于古老的沉积物质的部分熔融;因此认为黄绿山奥长花岗斑岩不属于S型花岗岩,而属于I型花岗岩。

图9 10000Ga/Al—Zr图解(a)和10000Ga/Al—CaO/(K2O+Na2O) (b)图解Fig. 9 Diagrams of 10000Ga/Al—Zr (a) and 10000Ga/Al—CaO/(K2O+Na2O) (b)

黄绿山奥长花岗斑岩中未发现由于基性岩浆注入形成的暗色包体,而且样品SiO2含量高(73.80%~74.37%)且变化幅度小,而岩浆混合作用会造成不同的样品具有显著不同的地球化学成分,因此认为黄绿山奥长花岗斑岩不可能由岩浆混合作用形成。样品Na2O/K2O均>1.50,表示奥长花岗斑岩为较高程度的部分熔融(邓晋福等,2015),另部分样品具有较高的Mg#值(>45)则可能是由于高硅熔体的局部不均匀抽取造成的(Barnes et al., 2019)。

样品Eu异常不明显,说明斜长石结晶分异作用微弱,而斜长石是低压下岩浆结晶分异过程中典型的分异矿物,因此认为黄绿山奥长花岗斑岩不可能由幔源岩浆结晶分异作用形成。与原始地幔相比(Rb/Sr=0.0342,Nb/Ta=17.5,Th/Nb=0.177;Sun and McDonough,1989),样品具有高的Rb/Sr(0.12~0.30)和Th/Nb(1.25~1.38),低的Nb/Ta(9.1~13.0)比值,与大陆地壳成分类似(Th/Nb=0. 44, Nb/Ta=11,Rb/Sr=0.35;Gao Shan et al., 2004);结合I型花岗岩一般被认为来自下地壳镁铁质—中性火成岩源区或与它们成分相当的变质岩源区(例如斜长角闪岩;Gao Peng et al., 2016);因此认为黄绿山奥长花岗斑岩主要来源于大陆下地壳源区,样品低的相容元素含量如Cr、Co、Ni也符合下地壳熔体特点。此外,样品在[n(87Sr)/n(86Sr)]i—εNd(t)图解上落入洋壳来源的高锶低钇中酸性岩下方(图8),加之样品具有较低的Sr/Y比值(8.0~14.4),因此认为黄绿山奥长花岗斑岩并非来源于俯冲洋壳部分熔融所产生的高锶低钇中酸性熔体;而且样品与锡铁山大陆型榴辉岩区域较为接近,说明岩体源区与柴北缘造山带下地壳成分相同,结合其1.03~1.21 Ga的二阶段Nd模式年龄(TDM2),认为黄绿山奥长花岗斑岩为柴北缘造山带中元古代下地壳部分熔融的产物。

4.2 构造环境指示意义

区域上的火成岩证据表明祁连古生代和柴达木地块之间存在一个早古生代的原特提斯洋的支洋盆(Song Shuguang et al., 2017;Wu Cailai et al., 2009)。锡铁山地区出露的形成时代为542 Ma左右的镁铁质岩浆岩具有钙碱性和岛弧型的微量元素特征(孙国超,2020);在柴北缘造山带东段,滩间山群内的群王尕秀弧型辉长岩的年龄为522~468 Ma (朱小辉等,2010),在柴北缘造山带西部,岛弧火山岩、辉长岩和钙碱性I型花岗岩等深成岩体形成于514~470 Ma区间内(袁桂邦等,2002;史仁灯等,2004;Wu Cailai et al., 2009);乌兰地区具有岛弧特征的火成岩形成于506~494 Ma (Li Xiucai et al., 2018);鱼卡—落凤坡地区弧后蛇绿岩杂岩,包括一套橄榄岩、火山岩、变辉长岩和斜长花岗岩的组合,年龄为535~493 Ma(朱小辉等,2014)。通过以上前人研究成果,说明柴北缘洋盆至少从542 Ma向相邻陆块开始俯冲,至少持续到470 Ma(图10)。柴北缘超高压变质带中的片麻岩和大陆型榴辉岩中含柯石英包体的锆石的形成时代介于423~449 Ma (Song Shuguang et al., 2005; Zhang Guibin et al., 2008, 2009, 2014;Yu Shengyao et al., 2015a)。与同期446 Ma同碰撞过铝质花岗岩一起标志着大陆俯冲作用的进行(Wu Cailai et al., 2002);即研究区至少在446 Ma之后即处于同碰撞构造体制当中。由于柴北缘岩浆活动在470~450 Ma时代范围内具有较为沉寂的特点(Wu Cailai et al. 2019; 图10),并且无变质作用的记录;因此研究区缺少俯冲晚期(洋盆关闭之前)岩浆岩活动的制约,即洋盆俯冲结束或地体开始碰撞的时间尚不明确(图10)。

图10 柴北缘地区岩浆岩结晶时代统计直方图(岩浆岩时代数据引自史仁灯,2004;卢新祥等,2007;孟繁聪等,2005;吴才来等,2007;Wu Cailai et al.,2002,2004,2009,2014,2019;Zhao Zhixin et al.,2017;Yu Shengyao et al.,2012;Song Shuguang et al.,2014;吴锁平,2008;赵志新,2018;角闪岩相变质时代据Chen Xin et al.,2020;榴辉岩变质时代据Mattinson et al.,2006;Zhang Guibin et al.,2008,2014和Yu Shengyao et al.,2015a)Fig. 10 Statistic histogram of magmatic rock crystallization ages in the Northern Margin of Qaidam (Magmatic age data from Shi Rendeng et al., 2004& ; Wu Cailai et al., 2002, 2004, 2007&, 2009, 2014, 2019;Lu Xinxiang et al. , 2007&;Meng Fancong et al., 2005&;Zhao Zhixin et al., 2017;Yu Shengyao et al., 2012;Song Shuguang et al., 2014;Wu Suoping, 2008&;Zhao Zhixin, 2018&;Amphibolite facies metamorphism age data from Chen Xin et al., 2020;Eclogite metamorphic age data from Mattinson et al., 2006; Zhang Guibin et al., 2008, 2014 and Yu Shengyao et al ., 2015a)

样品在花岗岩构造环境判别图解中(图11a~d),黄绿山奥长花岗斑岩样品都落入火山弧型花岗岩VAG范围内(Pearce et al., 1984),说明黄绿山花岗岩的形成与洋壳过程俯冲作用密切相关。此外,黄绿山花岗斑岩属于低钾拉斑系列,岩石类型属于奥长花岗斑岩(图6b);样品Sr<300×10-6和Yb<2×10-6,属于低锶低钇型花岗岩,显示源区相对较浅,岩石低钾低钙也指示岩浆源区较浅(张旗等,2010)。这种岩石类型多与伸展构造背景相关(张旗等,2010),暗示了黄绿山奥长花岗斑岩形成于伸展环境中。而侵入体围岩为奥陶系滩间山群,其产于岛弧或者弧后盆地环境中(吴冠斌等, 2010),考虑到黄绿山侵入体侵位年龄(466 Ma)与滩间山群形成时代接近,因此认为黄绿山形成于弧后盆地的伸展构造背景中。

图11 柴北缘黄绿山奥长花岗斑岩构造环境判别图解(据Pearce,1996)Fig. 11 Discrimination diagrams of tectonic environment for oligoclase granite porphyry in North Qaidam(after Pearce, 1996) VAG—火山弧花岗岩;ORG—洋脊花岗岩;WPG—板内花岗岩;syn-COLG—同碰撞花岗岩;post-COLG—后碰撞花岗岩 VAG—volcanic arc granites; ORG—ocean ridge granites; WPG—within plate granites; syn-COLG—syn-collision granites; post-COLG— post-collision granites

综上,弧后盆地的存在暗示了洋壳俯冲仍未结束,地体碰撞尚未开始。因此黄绿山奥长花岗斑岩记录了柴北缘洋盆俯冲晚期的岩浆作用,标志着柴北缘洋俯冲作用至少持续到466 Ma。

5 结论

(1)获得柴北缘造山带黄绿山奥长花岗斑岩结晶时代为465.7±3.4 Ma,属于中奥陶世的产物。

(2)认为柴北缘造山带黄绿山奥长花岗斑岩属于I型花岗岩,为中元古代下地壳物质部分熔融的产物。

(3) 柴北缘造山带黄绿山花岗闪长岩为弧后盆地的伸展环境下产物,指示柴北缘洋盆俯冲作用至少持续到466 Ma。

致谢:感谢河北省廊坊区域地质调查研究所实验室、吉林大学东北亚矿产资源评价国土资源部重点实验室以及核工业北京地质研究院分析测试研究中心提供的测试帮助;感谢审稿专家、编辑对本文提出的宝贵意见和悉心指导。。

参 考 文 献/References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

康珍,姜常义,凌锦兰,赵彦锋,宋艳芳,周伟.2015.青海省乌兰地区肯得隆富钛铁矿镁铁—超镁铁质岩体的岩石与矿石成因.岩石学报,31(08):2193~2210.

邓晋福,冯艳芳,狄永军,刘翠,肖庆辉,苏尚国,赵国春,孟斐,马帅,姚图.2015.岩浆弧火成岩构造组合与洋陆转换.地质论评,61(03):473~484.

卢欣祥,孙延贵,张雪亭,肖庆辉,王晓霞,尉向东,谷德敏.2007.柴达木盆地北缘塔塔楞环斑花岗岩的SHRIMP年龄.地质学报,81(05):626~634.

陆松年,陈志宏,李怀坤,郝国杰,周红英,相振群.2004.秦岭造山带中—新元古代(早期)地质演化.地质通报,23(02):107~112.

孟繁聪,张建新,杨经绥.2005.柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件——花岗岩和片麻岩的同位素与岩石地球化学证据.岩石学报,21(01):47~58.

青海省地质矿产局.1991.青海省区域地质志.北京:地质出版社:1~662.

史仁灯,杨经绥,吴才来,Tsuyoshi IIZUKA,Takafumi HIRATA.2004.柴达木北缘超高压变质带中的岛弧火山岩.地质学报,78(01):52~64.

孙国超.2020.俯冲地壳物质再造和再循环—柴北缘造山带古生代岩浆岩的地球化学证据.导师:赵子福.北京:中国科学技术大学博士学位论文:1~213.

王惠初,李怀坤,陆松年,袁桂邦,辛后田.2006.柴北缘鱼卡地区达肯大坂岩群的地质特征与构造环境.地质调查与研究,29(04):253~262.

吴才来,郜源红,吴锁平,陈其龙,Joseph L WOODEN.2007.柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年.岩石学报,23(08):1861~1875.

吴才来,杨经绥,Wooden J ,Liou J G,李海兵,孟繁聪,Persing H ,Meibom A.2001a.柴达木山花岗岩锆石SHRIMP定年.科学通报,46(20):1743~1747.

吴才来,杨经绥,TrevorI RELAND,Joe WOODEN,李海兵,万渝生,史仁灯.2001b.祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义.岩石学报,17(02):215~221.

吴冠斌,孙华山,冯志兴,樊俊昌,陆建培,王玉奇.2010.锡铁山铅锌矿床成矿构造背景.地球化学, 39(03):229~239.

吴锁平.2008.柴北缘古生代花岗岩类成因及其造山响应.导师:吴才来.北京:中国地质科学院博士论文:1~169.

杨经绥,宋述光,许志琴,吴才来,史仁灯,张建新,李海兵,万渝生,刘焰,邱海峻,刘福来,Shigenori Maruyama.2001.柴达木盆地北缘早古生代高压—超高压变质带中发现典型超高压矿物——柯石英.地质学报,75(02):175~179.

袁桂邦,王惠初,李惠民,郝国杰,辛后田.2002.柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义.前寒武纪研究进展,25(01):36~40.

张旗,金惟俊,李承东,王元龙.2010.再论花岗岩按照Sr—Yb的分类:标志.岩石学报,26(04):985~1015.

赵志新.2018.柴北缘锡铁山地区古生代构造岩浆演化与铅锌成矿控.导师:魏俊浩;付乐兵.武汉:中国地质大学博士论文:1~184.

朱小辉,陈丹玲,刘良,李涤.2010.柴达木盆地北缘都兰地区旺尕秀辉长杂岩的锆石LA-ICP-MS U-Pb年龄及地质意义.地质通报,29(z1):227~236.

朱小辉,陈丹玲,刘良,赵姣,张乐.2014.柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义.岩石学报,30(03):822~834.

Barnes C G, Kevin W, Vali M, Katie A. 2019. Most granitoid rocks are cumulates: deductions from hornblende compositions and zircon saturation. Journal of Petrology, 11: 227~2240.

BGMRQ (Bureau of Geology and Mineral Resources of Qinghai Province). 1991#. Regional Geology of Qinghai Province, China. Beijing: Geological Publishing House, Beijing: 1~662.

Boynton W V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. Developments in geochemistry, Elsevier, 2: 63~114.

Chappell B W, White A J. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489~499.

Chappell B W. 1974. Two contrasting granite types. Pacific Geology, 8(2): 173~174.

Chappell B W. 1999. Aluminium saturation in I- and S- type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.

Chen Danling, Liu Liang, Sun Yong, Liou Juhn G. 2009. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3): 259~272.

Chen Xin, Zheng Youye, Xu Rongke, Gu Pingyang, Yu Jiyuan, Bai Jie, Cai Pengjie, Jiang Xiaojia. 2020. Subduction channel fluid—rock interaction: indications from rutile—quartz veins within eclogite from the Yuka terrane, North Qaidam orogen. Geoscience Frontiers, 11(2): 635~650.

Deng Jinfu, FengYangfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu. 2015&. Magmatic arc and ocean—continent transition: Discussion. Geological Review, 61(3): 473~484.

Corfu F, Hanchar J M, Hoskin P W O, Peter K. 2003. Atlas of zircon textures. Reviews in mineralogy and geochemistry, 53(1): 469-500.

Gao Peng, Zheng Yongfei, Zhao Zifu. 2016. Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos, 266: 133~157.

Gao Shan, Rudnick Roberta L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers John, Wang Xuanche, Wang Qinghai. 2004. Recycling lower continental crust in the North China craton. Nature, 431(7019): 892~897.

Irvine T N J, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5): 523~548.

Kang Zhen, Jiang Changyi, Ling Jinlan, Zhao Yanfeng, Song Yanfang, Zhou Wei. 2015&. Petrogenesis and ore genesis of the ilmenite-rich Kendelong mafic—ultramafic intrusion in Wulan, Qinghai. Acta Petrologica Sinica, 31(08): 2193~2210.

Li Xiucai, Niu Manlan, Yakymchuk C, Yan zhen, Fu Changlei, Zhao Qiqi. 2018. Anatexis of former arc magmatic rocks during oceanic subduction: a case study from the North Wulan gneiss complex. Gondwana Research, 61: 128~149.

Liew T C, Hofmann A W. 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of central Europe: indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98(2): 129~138.

Lu Songnian, Chen Zhihong, Li Huaikun, Haoguojie, Zhou Hongying, Xiang Zhenqun. 2004&. Late Mesoproterozoic—early Neoproterozoic evolution of the Qinling orogeny. Geological Bulletin of China, 23(02): 107~112.

Lu Xinxiang, Sun Yangui, Zhang Xueting, Xiao Qinghui, Wang Xiaoxia, Wei Xiangdong, Gu Demin. 2007&. SHRIMP age of Tataleng rapakivi granite from the northern margin of Qaidam Basin. Acta Geologica Sinica, 81(05): 626~634.

Maniar P D, Piccoli P M. 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635~643.

Mattinson C G, Menold C A, Zhang J X, Bird D K. 2007. High- and ultrahigh- pressure metamorphism in the North Qaidam and South Altyn Terranes, Western China. International Geology Review, 49: 969~995.

Mattinson C G, Wooden J L, Liou J G, Bird D K, Wu Cailai. 2006. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China. American Journal of Science, 306(9): 683~711.

Mattinson C G, Wooden J L, Zhang J X, Bird D K. 2009. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China. Journal of Asian Earth Sciences, 35: 298~309.

Meng Fangcong, Zhang Jianxin, Yang Jingsui. 2005&. The tectonic—thermal event of post-HP/UHP metamorphism in Xitieshan area of the North Qaidam Mountains, western China: isotopic and geochemical evidence of granite and gneiss. Acta Petrologica Sinica, 21(01): 47~58.

O’Connor J T. 1965. A classification for quartz-rich igneous rock based feldspar ratios. US Geological Survey, 525B: 79~84.

Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai—Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4): 956~983.

Pearce J A. 1996. A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D. A. Ed.,Trace Element Geochemistry of Volcanic Rocks : Applications for Massive Sulphide Exploration, Geological Association of Canada, Short Course
Notes, 12: 79~113.

Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc—alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1): 63~81.

Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to mineralogy and petrology, 132: 288~299.

Sengör A M C and Natal’ in B A. 1996. Paleotectonic of Asia: Fragments of a synthesis. In: Yin A and Harrison M (eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 486~640.

Shi Rendeng, Yang Jingsui, Wu Cailai, Tsuyoshi IIZUKA, Takafumi HIRATA. 2004&. Island arc volcanic rocks in the North Qaidam UHP metamorphic belt. Acta Geological Sinica, 78(01): 52~64.

Song Shuguang, Zhang Lifei, Niu YaolingL, Su Li, Song Biao, Liu Dunyi. 2005. Evolution from oceanic subduction to continental collision: a case study from the northern Tibetan plateau based on geochemical and geochronological data. Journal of Petrology, 47(3): 435-455.

Song Shuguang, Niu Yaoling, Su Li, Wei Chunjing, Zhang Lifei. 2014. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to the continental collision. Geochimica et Cosmochimica Acta, 130: 42~62.

Song Shuguang, Yang Liming, Zhang Yuqi, Niu Yaoling, Wang Chao, Su Li, Gao Yanlin. 2017. Qi—Qin accretionary belt in Central China Orogen: accretionary by trench jam of oceanic plateau and formation of intra~oceanic arc in the Early Paleozoic Qin—Qi—Kun Ocean. Science Bulletin, 62(15): 1035~1038.

Sun Guochao. 2020&. Reworking and recycling of the subducted crustal materials: Geochemical evidence from Paleozoic magmatic rocks in the North Qaidam orogen. Supervisior: Zhao Zifu. Beijing: University of Science and Technology of China A dissertation for doctor’s degree: 1~213.

Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

Wang Huichu, Li Huaikun, Lu Songnian, Xin Houtian. 2006&. Geological Characteristics and Tectonic Setting of the Dakendaba Group in Iqe Area, Northern Margin of Qaidam Basin. Geological Survey and Research, 29(04): 253~262.

Wang Xiaoxia, Wang Tao, Castro A, Hu Nenggao. 2015. Proterozoic rapakivi granites from the North Qaidam orogen, NW China: implications for basement attribution. Gondwana Research, 28(4): 1516~1529.

Weaver B L. 1991. The origin of ocean island basalt end member compositions: trace element and isotopic constrains. Earth and Planetary Science Letters, 104(2-4): 381~397.

Wu Cailai, Yang Jingsui, J Wooden, J G Liou, Li Haibing, Meng Mancong, H.Persing, A.Meibom. 2001a#. Zircon SHRIMP dating of granit in Qaidam. Chinese Science Bulletiin, 46(20): 1743~1747.

Wu Cailai, Yang Jingsui, TrevorI RELAND, Joe WOODEN, Li Haibing, Wan Yusheng, Shi Rendeng. 2001b&. Zircon SHRIMP ages of Aolaoshan granite from the south margin of Qilianshan and its geological significance. Acta Petrologica Sinica, 17(2): 215~221.

Wu Cailai, Yang JingSui, Wooden J L, Liou J G, Li Haibing, Shi Rendeng, Meng Fancong, Persing H, Meibom A. 2002. Zircon SHRIMP dating of granite from Qaidamshan, NW China. Chinese Science Bulletin, 47: 418~422.

Wu Cailai, Yang JingSui, Wooden J L, Shi Rendeng, Chen Songyong, Meibom A, Chris M. 2004. Zircon U-Pb SHRIMP dating of the Yematan batholith in Dulan, North Qaidam, NW China. Chinese Science Bulletin, 49: 1736~1740.

Wu Cailai, Gao Yuanhong, Wu Suoping, Chen Qilong, Joseph L WOODEN. 2007&. Zircon SHRIMP dating of granites from DaQaidam. Acta Petrologica Sinica, 23(08): 1861~1875.

Wu Cailai, Wooden J L, Robinson P T, Gao Yunhong, Wu Suoping, Chen Qilong, Frank K M, Chris M. 2009. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam. Science in China Series D: Earth Science, 52(11): 1771~1790.

Wu Cailai, Donald Frost B R, Wooden J L. 2014. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China. Science China Earth Science, 57(12): 2945~2965.

Wu Cailai, Wu Di, Mattinson C, Lei Min, Chen Hongjie. 2019. Petrogenesis of granitoids in the Wulan area: Magmatic activity and tectonic evolution in the North Qaidam, NW China. Gondwana Research, 67: 147~171.

Wu Guanbin, Sun Huashan, Feng Zhixing, Fan Junchang, Lu Jianpei, Wang Yuqi. 2010&. The paleotectonic setting of Xitieshan lead—zinc deposit. Geochimica, 39(03): 229~239.

Wu Suoping. 2008&. The petrogenesis of Paleozoic granitoids in the North Margin of Qaidam Basin and their orogenic response. Supervisior: Wu Cailai. Beijing: Dissertation Submitted to Chinese Academy of Geological Sciences for Doctoral Degree: 1~169.

Yang Jingsui, Song Shuguang, Xu Zhiqin, Wu Cailai, Shi Rendeng, Zhang Jianxin, Li Haibing, Wan Yusheng, Liu Yan, Qiu Haijun, Liu Fulai, Shigenori Maruyama. 2001&. Discovery of Coesite in the North Qaidam Early Paleozoic Ultrahigh- high Pressure (UHP—HP) Metamorphic Belt, NW China. Acta Geological Sinica, 75(2): 175~179.

Yu Shengyao, Zhang Jianxin, Del Real P G. 2012. Geochemistry and zircon U-Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: constraints on the timing and nature of regional tectono—thermal events associated with collisional orogeny. Gondwana Research, 21: 167~179.

Yu Shengyao, Zhang Jianxin, Sun Deyou, Li Yunshuai, Gong Jianghua. 2015a. Anatexis of ultrahigh-pressure eclogite during exhumation in the North Qaidam ultrahigh-pressure terrane: constraints from petrology, zircon U-Pb dating, and geochemistry. Geological Society of America Bulletin, 127: 1290~1312.

Yu Shengyao, Zhang Jianxin, Sun Deyou, Pablo G D R, Li Yunshuai, Zhao Xilin, Hou Kejun. 2015b. Petrology, geochemistry, zircon U-Pb dating and Lu-Hf isotope of granitic leucosomes within felsic gneiss from the North Qaidam UHP terrane: Constraints on the timing and nature of partial melting. Lithos, 218: 1~21.

Yuan Guibang, Wang Huichu, Li Huimin, Hao Guojie, Xin Houtian. 2002&. Zircon U-Pb age of the gabbros in Luliangshan area on the northern margin of Qaidam Basin and its geological implication. Progress in Precambrian Research, 25(01): 36~40.

Zhang Cong, Zhang Lifei, Bader Thomas, Song Shuguang, Lou Yuxing. 2013. Geochemistry and trace element behaviors of eclogite during its exhumation in the Xitieshan terrane, North Qaidam UHP belt, NW China. Journal of Asian Earth Sciences, 63: 81~97.

Zhang Guibin, Song Shuguang, Zhang Lifei, Niu Yaoling. 2008. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: evidence from petrology, geochemistry and geochronology. Lithos, 104: 99~118.

Zhang Guibin, Zhang Lifei, Song Shuguang, Niu Yaoling. 2009. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35: 310~322.

Zhang Guibin, Zhang Lifei, Chrisity A, Song Shuguang, Li Qiuli. 2014. Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China: constraints from zircon and rutile thermometry and U-Pb geochronology. Lithos, 205: 15~27.

Zhang Jianxin, Mattinson C G, Yu Shengyao, Li Jinping, Meng Fancong. 2010. U-Pb zircon geochronology of coesite~bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHPmetamorphism during continental subduction. Journal of Metamorphic Geology, 28: 955~978.

Zhang Long, Chen Ruixin, Zheng Yangfeng, Hu Zhui, 2015. Partial melting of deeply subducted continental crust during exhumation: insights from felsic veins and host UHP metamorphic rocks in North Qaidam, northern Tibet. Journal of Metamorphic Geology, 33: 671~694.

Zhang Qi, Jin Weijun, Li Chengdong, Wang Yuanlong. 2010&. Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents: Index. Acta Petrologica Sinica, 26(4): 985~1015.

Zhao Zhixin, Wei Junhao, Fu Lebing, Liang Shengnan, Zhao Shaoqing. 2017. The Early Paleozoic Xitieshan syn-collisional granite in the North Qaidam ultrahigh-pressure metamorphic belt, NW China: petrogenesis and implications for continental crust growth. Lithos, 278: 140~152.

Zhao Zhixin. 2018&. Paleozoic tectono—magmatic evolution and its control on lead—zinc mineralization in Xitieshan, North Qaidam. Supervisor: Wei Junhao;Fu Lebing. Wuhan: A Dissertation Submitted to China University of Geosciences For the Doctor Degree of Scinecs: 1~184.

Zhu Xiaohui, Chen Danling, Liu Liang, Li Di. 2010&. Zircon LA-ICP-MS U-Pb dating of the Wanggaxiu gabbro complex in the Dulan area, northern margin of Qaidam Basin, China and its geological significance. Geological Bulletin of China, 29(z1): 227~236.

猜你喜欢

黄绿造山图解
黑龙江省造山带研究:关于洋壳俯冲造山和陆壳碰撞造山磨拉石的认识*
柴达木盆地北缘造山型金矿成矿条件及找矿潜力
玩味色彩空间
与侵入岩有关的金矿床与造山型金矿床的区别
非洲东南部造山型金矿成矿环境与资源潜力分析
黄绿之境
图解十八届六中全会
彩虹
图解天下
植物谜