哈尔滨荒山岩芯黄土-古土壤的化学风化特征*
——对古土壤形成环境指示
2021-07-22谢远云康春国迟云平魏振宇张月馨
张 曼,谢远云,2†,康春国,迟云平,2,吴 鹏,魏振宇,张月馨,刘 璐
(1. 哈尔滨师范大学地理科学学院,哈尔滨 150025;2. 哈尔滨师范大学寒区地理环境监测与空间信息服务黑龙江省重点实验室,哈尔滨150025;3. 哈尔滨学院地理系,哈尔滨 150086)
化学风化是地球表层系统中的一个重要过程,通过强迫和反馈机制,与全球气候变化及生物地球化学循环密切相关[1]。沉积物的化学风化在许多地表过程中起到重要作用,例如,通过消耗大气CO2和控制陆地营养物质进入海洋的数量从而调节全球碳循环和改变生态系统结构[1-3]。同时,化学风化也可以改变土壤的微形态、矿物和地球化学组成[4]。因此,重建沉积物化学风化过程和历史对理解大气CO2浓度变化、全球碳循环、陆地气候环境变化以及海洋物质平衡等具有重要意义[1-3]。此外,沉积物的化学风化对于评估风尘物源贡献、侵蚀速率、源到汇的沉积物质平衡以及构造-气候-风化的耦合关系等也具有重要意义[5]。
中国黄土被认为是最有价值的陆相古气候古环境地质档案,记录了亚洲内陆干旱化、北半球风尘源区、古大气环流模式以及全球古气候变化等重要信息[6-7]。黄土-古土壤序列反映了第四纪冰期-间冰期的气候旋回变化,已有的研究显示,黄土层是冰期干冷气候条件下冬季风的产物,而古土壤层是间冰期夏季风盛行的暖湿气候条件下成壤作用的产物[8-13]。
中国黄土-古土壤序列记录了长期的化学风化和气候演化历史[3,14-16],迄今为止,黄土-古土壤序列的化学风化研究主要集中在黄土高原。然而,由于缺乏保存良好的长时间尺度的黄土堆积,本文对东北地区,特别是位于欧亚黄土带最东端的哈尔滨地区长期的化学风化历史和气候演化了解很少。黑龙江黑土母质大多数为黄土性黏土,土壤质地较黏,透水性较差,哈尔滨古土壤成土环境与黑土形成环境是否有必然联系,目前还没有此类相关研究。为此,本文对哈尔滨荒山岩芯的黄土-古土壤序列进行了元素地球化学、磁化率和重矿物分析,揭示哈尔滨地区502 ka以来黄土-古土壤序列的化学风化特征,并对古土壤形成的气候环境与黑土进行了对比。此项研究对于理解成壤作用对区域气候的响应具有重要指示意义。
1 材料与方法
1.1 研究区概况
哈尔滨(44°04′~46°40′N、125°42′~130°10′E),该区域属于中温带大陆性季风气候,呈明显的半湿润性、半干旱性,冬季受蒙古西北气流控制,同时也受鄂霍次克寒流影响,年均气温4.2 ℃,年主导风为西南风,平均风速3.6 m·s-1,全年平均降水量569.1 mm,夏季占全年降水量的60%。哈尔滨荒山(现称之为天恒山)岩芯(45°47′N,126°47′E)位于哈尔滨市道外区团结镇东郊,距离哈尔滨市约25 km,处于松花江冲积平原第二阶地,南部为丘陵区,南部紧临松嫩平原,西面为阿什河,北部为松花江[17]。图1为哈尔滨荒山岩芯位置及剖面图。
1.2 样品采集与实验
使用双管单动内衬塑料套管取芯技术钻取一根101.11 m长的沉积物岩芯,该岩芯已打穿整个第四纪直至白垩系基岩,回收岩芯93.21 m,取芯率在92%以上(本文主要研究30.4 m以上风尘黄土部分),随后按照2.5 cm间距对岩芯进行分割。基于岩芯沉积物的颜色、岩性、沉积结构特征及磁化率变化特征,岩芯的岩性自上而下依次为:
(1)0~0.98 m:呈暗褐色-褐黑色,现代土壤,含较多虫孔和植物根系,受人类活动和生物扰动明显。
(2)0.98~30.4 m:存在5个黄土-古土壤互层,白色菌丝体发育。其中S0-S4古土壤层为深灰褐色-灰黑色砂质黏土,结构致密。L1-L5黄土层为浅黄褐色粉砂,结构疏松层理发育,其中L2黄土层含青灰色淤泥质团块。
(3)30.4~101.11 m:河湖相沉积物,含细砂、黏土、粗砂,局部具有亚砂土-亚黏土夹层,铁染明显,其中,65.08 m以下粒度逐渐变粗,为砂质黏土和泥质砂(亚砂土),70.34 m粒度开始变粗,为黄白色粗砂。
磁化率样品分析间隔为10 cm,送至中国科学院地球环境研究所黄土和第四纪地质国家重点实验室,在远离干扰磁场的情况下,采用英国Bartington仪器公司生产的MS2型磁化率仪对荒山岩芯样品在470 Hz的低频下进行质量磁化率的测定。
常量、微量元素样品间隔40~60 cm,在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。常量元素使用荷兰帕纳科XRF光谱仪,采用压片法完成,测量误差<3%,微量元素使用电感耦合等离子体质谱仪MAT完成测定。
在黄土层L2(14.05 m)、L3(17.75 m)、L4(22.25 m)和古土壤S3层(20.15 m)分别采取了三个样品作重矿物分析。在河北省廊坊诚信地质服务公司进行重矿物处理和鉴定。鉴定过程如下:将样品烘干称重,加入离散剂淘洗,之后用永久性磁铁将样品磁选出强磁性矿物、电磁性矿物和无磁性矿物。
1.3 年代标尺的建立
在荒山剖面3 m处取OSL样品,单片再生剂量法测得OSL年龄为7.4 ka,此外,在L5黄土层底部(剖面深度约27.6 m)的ESR年龄数据为482 ka,说明哈尔滨荒山黄土-古土壤系列反映的冰期与间冰期旋回周期约为100 ka,与黄土高原及深海氧同位素一致[18-19]。因此,本研究年代标尺的建立是采用深海氧同位素堆栈记录[18]的MIS阶段转折(即冰期向间冰期转化的中间点)以及7.4 ka作为控制点,采用线性外推的方式获取(图2)。这个方法已被普遍应用于黄土高原和赤峰黄土剖面[19]。其中,MIS1/2控制点年龄为11 ka,MIS5/6控制点年龄为130 ka,MIS7/8控制点年龄为243 ka,MIS9/10控制点年龄为337 ka,MIS11/12控制点年龄为424 ka。
1.4 化学风化指数
本研究采用度量化学风化程度的参数有:元素迁移指数:αAlE=[Al/E]sample/[Al/E]UCC、化学蚀变指数(CIA)[Al2O3/(Al2O3+K2O+Na2O+CaO*)]、化学蚀变指标(CPA,Chemical Proxy of Alteration)[Al2O3/(Al2O3+Na2O)]、退碱指数(Bc)[(CaO*+Na2O)/Al2O3]、风化淋溶系数(BA)[(K2O+Na2O+CaO*+MgO)/Al2O3]、化学风化指数(CIW,Chemical Index of Weathering)[Al2O3/(Al2O3+Na2O+CaO*)]和风化指数(WIP,Weathering Index)[100×(CaO*/0.7+2Na2O/0.35+2K2O/0.25+MgO/0.9)]。上述式中:各元素采用摩尔分数,CaO*为硅酸盐主峰中的CaO。本文采用McLennan[20]提出的校本方法估算硅酸盐组分中的CaO含量:首先消除磷灰石中的CaO,即CaOR=mol CaO-(10/3×mol P2O5)。假如CaOR≤Na2O,则CaOR值=CaO*;假如CaOR>Na2O,则CaO*=Na2O。
αAl指数[21]反映的是样品中的稳定元素Al和任意元素E比值与其在UCC(Upper Continental Crust)中相比较,αAlE>1,E元素相对于UCC表现为亏损;αAlE=1,E元素不富集也不亏损;αAlE<1,E元素相对于UCC呈现为富集状态。CIA值主要反映硅酸盐矿物(主要是长石矿物)的风化程度[22-24],通常情况下,CIA指数介于50~100之间[25],其中80~100反映炎热潮湿条件下的强烈风化程度;60~80属于温暖湿润气候条件下的中等风化程度;50~60代表寒冷干燥气候条件下的低等化学风化程度[26-27]。一般情况下,CIW指数在50~60之间属于未经过风化的岩石,CIW>70,表明该样品经过较强烈的化学风化[28-29]。随着化学风化和再循环的增强,WIP指数降低。CPA为反映钠长石淋溶强度的适宜指标[30],BA主要反映盐基的淋溶情况,与化学风化呈反比[31],Bc值越大,沉积环境越干旱,越小越暖湿[32]。
2 结果与讨论
2.1 元素特征
荒山岩芯黄土层的主量元素以SiO2(61.02%)、Al2O3(19.51%)、Fe2O3(4.19%)和K2O(3.03%)为主,四者平均含量之和可达87.75%;古土壤层的主量元素以SiO2(65.85%)、Al2O3(19.33%)和Fe2O3(4.23%)为主,三者之和可达89.41%。其中,SiO2变化范围为58.15%~66.70%(平均值为63.44%,下同);Al2O3变化范围为 16.98%~20.59%(19.42%);Fe2O3变化范围为 3.03%~4.58%(4.21%);MgO变化范围为1.56%~2.07%(1.87%);CaO变化范围为0.72%~0.96%(0.87%);Na2O变化范围为1.62%~2.45%(1.84%);K2O变化范围为2.80%~3.19%(2.99%);MnO变化范围为0.001%~0.74%(0.46%);TiO2变化范围为0.15%~0.80%(0.39%);P2O5变化范围为0.001%~0.22%(0.08%)。
荒山岩芯元素随深度表现出一定程度的变化(图3),各元素有明显的波峰曲线,其中,SiO2、K2O、Na2O、TiO2元素含量在古土壤S1和S3中表现出明显的峰值,Al2O3、Fe2O3、CaO、MgO、P2O5元素含量有明显的低谷。相对于UCC平均含量[33],荒山岩芯的SiO2、MgO、CaO、Na2O、K2O、P2O5含量明显偏低,Ca、Na元素亏损较多,Al2O3、MnO元素含量较高,Fe2O3、TiO2含量与UCC基本一致。
2.2 元素迁移αAl指数特征
元素的化学风化分异规律取决于其表生环境中的地球化学行为[20,33]。在化学风化过程中,元素的迁移能力通常依次为:Ca>Sr>Na>Mg>K>Si>(Fe、Ti、Al)[34],荒山岩芯黄土-古土壤序列的αAl指数在0.59~6.87之间变化,其中,αAlFe变化范围为1.32~1.8(1.53);αAlCa变化范围为 5.55~6.87(6.20);αAlMg变化范围为1.36~1.71(1.51);αAlK变化范围为1.31~1.79(1.46);αAlNa变化范围为1.78~3.73(2.75);αAlTi变化范围为0.73~1.04(0.91);αAlRb变化范围为1.09~1.43(1.23);αAlSr变化范围为1.70~2.46(2.03);αAlCs变化范围为0.59~0.91(0.75);αAlBa变化范围为1.07~1.58(1.28)。荒山岩芯中,Fe、Ca、Mg、K、Na、Rb、Sr、Ba元素较为亏损(图4),Ti、Cs元素相对富集,按反应的化学风化强度,哈尔滨荒山岩芯元素迁移αAl指数可排序为αAlCa>αAlNa>αAlSr>αAlFe>αAlMg>αAlK>αAlBa>αAlRb>αAlTi>αAlCs,其中,在黄土层αAl指数 序 为 αAlCa>αAlNa>αAlSr>αAlFe>αAlMg>αAlK>αAlBa>αAlRb>αAlTi>αAlCs,在 古 土 壤 层 中,αAl指 数 序 为αAlCa>αAlNa>αAlSr>αAlFe>αAlMg>αAlK>αAlBa>αAlRb>αAlTi>αAlCs。αAl指数在黄土层-古土壤层排序一致,可见黄土-古土壤形成环境的相似性。
2.3 化学风化程度
荒山岩芯黄土-古土壤序列的CIA值变化范围为67.6~76.5之间,平均值为71.6;CIW指数变化在77.2~85.3之间,平均值为81.4。在古土壤层(S0~S4)中,CIA范围分别为73.0~73.9(73.4)、67.6~71.8(69.8)、71.3~72.8(72.2)、69.6~73.9(72.3)、72.0~72.9(72.3);黄土层(L1-L5)变化范围分别为71.0~73.6(72.2)、71.1~74.1(72.7)、71.3~73.1(72.2)、71.1~73.3(72.3)、71.8~74.5(73.0)。CIA值在荒山岩芯黄土-古土壤序列中没有明显变化,相对于黄土层,古土壤层也未表现出更高的化学风化强度,甚至在古土壤S1和S3层中有明显的低值(图5)。WIP与CIA曲线变化趋势相对一致,即可排除钾的交代作用的影响。W(Weathering)指数[35]和WIP的值也常用来反映矿物的风化程度,未风化母岩的W值一般在0~15[36],荒山岩芯W变化范围为45.0~56.5(51.7),远大于未风化母岩的W值,综上所述可确定该岩芯经历了中等化学风化强度。
如图5所示,CPA曲线、BA曲线和Bc曲线表现为波动起伏,CPA与BA和Bc曲线呈现出明显的对称性,体现为负相关性特征。从曲线变化特征上看,CPA同CIA一样在S1和S3古土壤层也呈现出明显的最低值,而BA和Bc在此处表现为明显的最高值,表明该处化学风化程度较弱。从平均值上看,在黄土层(L1-L5)中,CPA平均值为86.4,BA平均值为0.4,Bc平均值为0.1;在古土壤(S0~S4)中,CPA平均值为86.7,BA平均值为0.3,Bc平均值为0.1。CPA、BA、Bc在黄土与古土壤层没有明显的差异,表示黄土与古土壤形成过程中气候差异不大,但其在古土壤中,BA、Bc平均值略小于黄土,表明古土壤形成环境较湿润。
在由Nesbitt和Young[26]提出的大陆风化的Al2O3-(CaO*+NaO)-K2O三角模型,即A-CN-K三角图解中(图6),荒山岩芯数据点全部位于斜长石、钾长石上方,且与PAAS(Post-Archern average Australian Shale,代表典型的大陆初期风化趋势)较为接近,数据投点基本平行于A-CN连线,表明斜长石已经风化分解,Ca、Na流失,钾长石稳定。数据点没有向A-K连线靠近的趋势,说明还没有进入脱K过程。各数据点紧紧聚集团簇,说明哈尔滨黄土经历了一个稳定状态的化学风化。风化指数WIP常用于估算沉积物的化学风化程度甚至可以区分初次沉积和再沉积循环[37],即使在风化程度很强地区,初次循环沉积物的CIA/WIP比值也很少超过10,而多次循环沉积物的CIA/WIP比值通常大于10,甚至达到100左右[37],荒山岩芯中,CIA/WIP比值在1.74~2.34之间,表明荒山岩芯至少经历了一次沉积循环。K2O/Al2O3与Na2O/Al2O3二元图解常被用来解释沉积物的化学风化程度及循环再沉积[38]。结合图6的A-CN-K三角图和K2O/Al2O3与Na2O/Al2O3二元图解表明,荒山岩芯黄土-古土壤经历了中等程度的化学风化和再循环过程。
2.4 磁化率与重矿物特征
黄土磁化率由沉积物中铁磁性矿物浓度决定[42],古土壤层通常经历了磁性矿物的富集较其原生黄土有相对较高的磁化率值[43-45]。荒山岩芯磁化率曲线如图5所示,地表受人类活动的影响,有一个明显的最高值,其次,在黄土-古土壤层呈现出了高低性周期变化,黄土层出现了明显的较高值,在古土壤层磁化率较低,与黄土高原磁化率有相反的变化规律,与阿拉斯加和西伯利亚较为相似[46]。
从图5磁化率曲线变化趋势上看,磁化率在古土壤层有明显的低值,在黄土层磁化率相对较高。荒山岩芯重矿物主要包括磁铁矿、磁赤褐铁矿、角闪石、绿帘石、辉石、石榴子石、电气石、赤褐铁矿、钛铁矿、独居石、榍石、白钛石、锐钛石、金红石、磷灰石、锆石等,其中磁铁矿和磁赤褐铁矿为铁磁性矿物。由图7重矿物含量可知,哈尔滨古土壤不含磁铁矿,铁磁性矿物为磁赤褐铁矿且含量仅为3.09%,黄土层磁性矿物为磁铁矿,为强磁性矿物,在L2、L3、L4层含量分别为9.17%、10.09%、15.48%,表明铁磁性矿物含量差异是导致磁化率高低变化的基本原因。
黄土磁化率增强机制有多种解释,碳酸钙溶解作用[43]、自然条件下的植被燃烧[47]、成壤作用[44,48]、植物残体分解[49]、磁通量稀释模式[50]、物源物质的影响[51]、风力作用[52]、成壤过程中发生的磁性矿物的溶解作用[46]。荒山岩芯CIA、CIW、CPA、W指数与磁化率具有相同的变化特征,在古土壤层低于黄土层,且BA、Bc指数表征哈尔滨古土壤形成气候较为湿润。荒山岩芯古土壤的磁化率解释可归因于磁性矿物的溶解作用。黄土高原大部分地区,蒸发量大于降水量,地表长期处于一种干旱氧化环境,适当的水分有利于细小的磁铁矿和磁赤铁矿形成,使得磁化率与古气候呈正比;哈尔滨地区所处纬度较高,气候较为寒冷,蒸发作用较弱,每年10—5月份均会有冰雪覆盖,降水量大于黄土高原地区,寒冷湿润气候为该地区的主要特征。间冰期湿润环境导致该地区地表趋于还原环境,喜氧化的强磁性矿物磁铁矿和磁赤铁矿还原为弱磁性矿物褐铁矿等。
2.5 古土壤形成环境
我国黑土分布于四季分明的北温带,主要分布于辽宁省、吉林省、黑龙江省中东部,地处温带半湿润气候区,黑土分布区气候条件较为湿润,年降水量一般为500~800 mm左右,大多数集中于暖季,占全年降水量1/2以上,东北地区广泛存在的季节性冰融交替现象大幅度提高了土壤团聚体的水稳定性[53],冻融作用可使土壤中水分发生迁移,由水势高的下部迁移至上部,随着冻融循环周期的增加,土壤含水量逐渐增大[54],冻融作用和冰雪融化是土壤容重、土壤结构和含水率的重要因素[55]。
以往研究表明黑土是温带草原草甸条件下形成的土壤,其自然植被为草原化草甸植物,母质绝大多数为黄土性黏土,土壤质地较黏,透水较差,且有季节性冻土,容易形成上层滞水,夏季温暖多雨,植物生长茂盛,有机物年积累量非常大,秋季霜期较早,植物残体易存于地表和地下,随之冬季气温急剧下降而使残枝落叶等有机质得不到较好分解,第二年夏季土温升高,微生物作用迫使植物残体转化为腐殖质在土壤中积累,从而形成深厚的腐殖质层。在夏季多雨时期,在临时性滞水和有机质分解产物的影响下,产生还原条件,使土壤中的铁元素发生还原,这也是导致上述古土壤层磁化率低的重要因素。可见,黑土成土过程是一种特殊的草甸过程,主要包括腐殖质积累过程和物质的迁移与转化过程[56]。
其次,黑土区冬季较为寒冷,降雪量较少,土壤冻结深度较大,持续时间较长,季节性冻层明显,冻层的存在对黑土团粒结构的形成具有重要意义[57],土的冻胀作用会使土壤颗粒进一步变细,粉粒、黏粒含量增多[58]。土壤冰冻状态保持时间的长短,冻土一般可分为短时冻土、季节冻土以及多年冻土3种类型。短时冻土难以形成持续的还原环境,多年冻土在长期低温下,有机质难以进行矿化分解,因此,黑土多分布于季节冻土区[57]。
哈尔滨古土壤不同于赤峰地区的红色古土壤[59]及黄土高原乃至其他地区的棕红色古土壤[59],哈尔滨古土壤为灰褐色-灰黑色黏土,结构致密,粒间孔隙度较小,透水性差,通气性差,热容量大,温度不易上升,为冷性土,古土壤的此种地域性差异可追溯为气候差异。
赤峰地区地处内陆,属于温带半干旱大陆性气候区,年平均气温为7.5℃,年均降水量365 mm。哈尔滨年均降水量529 mm,气候较为寒冷(年平均气温为4.5℃),且持续时间较长。一年中,表土温度最低值出现在1月份,之后温度开始缓慢升高,到3月末地温开始变为零上,到6月中旬冻土全部消融,夏季多雨短暂,降水量大于赤峰及黄土高原地区,蒸发量小于赤峰及黄土高原地区,气温较低、湿度较大为本区的主要气候特点。
荒山岩芯中,低的化学风化程度(CIA、CIW、CPA、W表现为低值,而BA、Bc、WIP体现出明显的高值)表明了哈尔滨古土壤冷湿气候条件下的成壤环境,蒸发量小于降水量,致使地表长期处于湿润气候环境,古土壤层质地较黏,透水性较差,水分在不透水层或透水速度较慢层容易造成缺氧环境及还原环境,这种条件下铁磁性矿极易发生溶解作用,强磁性矿物磁铁矿还原为弱磁性矿物褐铁矿等。哈尔滨古土壤的这种滞水潜育成壤机制与黑龙江黑土的形成过程类似,故可称之为古黑土。尽管哈尔滨古土壤为间冰期气候条件下的产物,其水热配置成壤条件应为冷湿环境。黄土为风力搬运沉积而形成,是冰期冷干气候条件下的产物。
3 结 论
(1)荒山岩芯的黄土层中常量元素以SiO2、Al2O3、Fe2O3和K2O为主,四者之和可达87.75%;古土壤层中以SiO2、Al2O3和Fe2O3为主,三者之和可达89.41%。表征元素迁移能力的αAl指数在化学风化过程中Ca、Na、Sr、Fe、Mg、K、Ba和Rb元素的相对亏损,Ti和Cs元素的相对富集,在黄土-古土壤序列中的排序依次为αAlCa>αAlNa>αAlSr>αAlFe>αAlMg>αAlK>αAlBa>αAlRb>αAlTi>αAlCs。(2)荒山岩芯的BA指数平均值为0.4;Bc指数平均值为0.1,Rb/Sr比值在古土壤中比值均大于其在下伏黄土,表明古土壤形成时气候较为湿润。CPA(86.5)CIA(71.6)CIW(81.4)和W(51.7)均体现出该岩芯属于中等化学风化强度。黄土-古土壤的化学风化强度没有明显差异,且在古土壤S1和S3层中表现为最低程度的化学风化。(3)与洛川和赤峰黄土磁化率对比,哈尔滨地区黄土-古土壤序列磁化率特征体现出了明显的地域性差异,古土壤层磁化率低于黄土层。从重矿物组成上看,哈尔滨古土壤不含磁铁矿,且铁磁性矿物为磁赤褐铁矿,含量仅为3.09%,黄土层中铁磁性矿物为磁铁矿,为强磁性,在L2,L3,L4层含量分别为9.17%、10.09%和15.48%,磁性矿物种类及含量是影响磁化率高低变化的基本原因。黑龙江地区纬度高,气温低,降雨量大,蒸发量小,荒山岩芯古土壤的磁化率解释机制可归因于磁性矿物的溶解作用。(4)哈尔滨古土壤S1和S3层,磁化率、CIA、CIW、CPA、W均体现出明显的低值,BA、Bc、WIP体现出明显的高值,表明哈尔滨古土壤是冷湿条件下成壤作用的产物,与黑龙江黑土形成环境相似。尽管哈尔滨古土壤为间冰期气候条件下的产物,但成壤环境与其他地区有较大的差异性,其水热配置应为冷湿环境。
致 谢:地球化学组成得到中国地质大学(武汉)地质过程与矿产资源国家重点实验室黄俊华研究员的大力支持,硕士研究生杜慧荣、孙磊和王嘉新参加了部分野外取样和实验室样品处理工作,在此一并表示感谢。