APP下载

基于EPON网络的智能变电站继电保护测试技术的研究

2021-07-22朱华刘柱揆许守东张可胡凡君胡永承

云南电力技术 2021年3期
关键词:测试仪无源继电保护

朱华,刘柱揆,许守东,张可,胡凡君,胡永承

(1. 云南电网有限责任公司电力科学研究院,昆明 650217;2. 云南电网有限责任公司大理供电局,云南 大理 671099;3. 南京智汇电力技术有限公司,江苏 南京 211100)

0 前言

智能变电站是推进我国电网智能化建设的重要一环,对电网的发、输、变、配等环节起到重要的支撑作用,其中网络通信技术是该领域内的重要技术之一[1]。目前我国智能变电站通信部分建设的过程层网络通常是利用工业以太网来进行组网,该过程所需要用到的工业交换机成本相当昂贵,使得智能电网的建设成本急剧攀升。现阶段一般利用EPON网络技术来替代工业以太网,实现智能变电站的信息传递。

变电站继电保护系统是为确保变电站系统在发生故障时,第一时间隔离故障设备,维持变电站的稳定运行。其中对继电保护测试技术的研究是提升变电站继电保护系统的重要途径[2-4]。

采用EPON网络技术虽然能很好地满足智能变电站的通信需求,并且减少建设成本,但也会对系统的继电保护造成安全性、可靠性、实时性等问题,同时也容易导致变电站继电保护产生拒动风险[5-7]。所以研究如何解决这些问题极为必要。

1 问题分析

现阶段变电站常用的数字继电保护测试仪通常基于单个保护测试项目的测试仪器,测试时可对保护装置、测控装置、智能终端进行相应的测试。通过大量的调研分析,现将目前的数字继电保护测试仪所存在问题总结如下:

1)现有的智能变电站数字继电保护测试仪不能实现对保护装置、测控装置、智能终端的通信一致性进行检查;

2)现有的数字继电保护测试仪不能实现智能化,即每一种测试类型的设置都需经过调试人员的计算并手动输入到测试仪;

3)现有的数字继电保护测试仪不能实现在试验过程中自动读取保护装置、测控装置、智能终端的定值,即每一种测试类型的定值设置都需经过调试人员的察看保护装置的定值参数并手动输入到测试仪中;

4)现有的数字继电保护测试仪不能检测基于EPON网络通信的继电保护设备。

针对上述问题,本文研究设计了一种基于EPON网络的智能变电站继电保护测试技术来满足基于EPON网络的智能变电站发展建设的需要。

2 技术与功能

本文所研究的基于EPON网络的智能变电站继电保护测试仪可对智能变电站的保护装置、测试装置、智能终端进行测试,并且可以通过导入全站SCD模型文件针对智能变电站的保护装置、测控装置、智能终端三者进行自动设定测试方案并模拟现场实际情况与故障,输出符合智能变电站的规约或模拟报文错误,从而达到对保护装置、测控装置、智能终端的通信一致性和可靠性进行检查的目的。该测试所采用的主要技术如下:

1)EPON网络技术,该技术可支持以太网类的多种业务传输,实现信息在无源光纤上的点到点传输。相较于传统技术而言,其覆盖范围更广、造价更为低廉,能够实现设备数据的自动读取以及通信一致性等功能;

2)新型数字继电保护测试仪,包括中央处理单元、对时单元、光输入输出单元等,能够实现上行数据的收集以及下行数据的分发功能,实现对智能变电站的保护装置、测控装置以及智能终端的自动化测试。

3 EPON网络技术

智能变电站采用IEC 61850标准协议,通过架构分层完成智能变电站内各智能设备间的信息共享与互操作,这就对变电站的通信网络提出了更高的要求。现阶段,我国变电站通信网络仍经由数字微波和光纤进行传播为主,同时也有电力线载波以及卫星通讯等多种类型的辅助通信方式。为了实现变电站的智能化升级,同时伴随着光通信技术的进步,EPON网络技术也逐步开始运用到智能变电站的建设当中。

EPON网络主要由光线路终端(OLT)、光配线网络(ODN)、光网络单元(ONU)组成,形成单纤双向系统。其中,光纤、无源光分路器(或连接器)组成ODN,ODN在ONU与OLT之间构建起光通道,起到收集上行数据、分发下行数据的功能,此外还具有波长复用和分配光信号功率的作用。EPON网络的信号传输是通过波分复用技术对双向信号的传输进行处理,上行数据可由不同的ONU处通过时分复用的方式聚集到中心局端处的OLT,而下行数据则是通过点对点的类型广播方式又沿着OLT传输到全部的ONU上[8]。EPON的网络组成以及其各部分间的信息传递的示意图如下所示:

图1 EPON网络结构图

总体而言,EPON网络技术的信号传输方式更加科学合理化,并且其动态带宽分配、补偿测距、自动发现技术、基于时分复用的同步技术、光纤保护倒换、物理层的加解密等特点也使得其相较于传统通信技术而言,具有更大的优势。

4 数字测试仪的组成及功能

基于EPON网络的智能变电站数字继电保护测试仪的主要组成部分包括中央处理单元以及分别与其连接的对时单元、EPON输出/输入单元等三个部分。其连接框图如图2所示。

图2 新型数字测试仪的连接框图

1)中央处理单元,包括ADSP、FPGA两个子处理模块。其中ADSP子模块包括BF518处理器,是作为主控CPU,用于与工控机的通讯和EPON无源光数字部分输入输出;而FPGA子模块包括XC3S500E,用于与CPU同步及通讯、对时;中央处理单元将控制与通讯分开处理实时性可达30 ns。

2)对时单元,包括GPS模块、IRIG-B码对时模块和IEEE1588对时模块。GPS模块和IEEE1588对时模块分别与ADSP子模块中的BF518处理器连接;GPS模块、IRIG-B码对时模块和IEEE1588对时模块均与FPGA子模块连接。该单元主要用于矫正测试仪器的绝对时刻,完成同步的时间测试,保证在绝对的相同时间完成测试。

3)光输出/输入单元,包括FTLF1217 P2xTL模块,用于以太网电信号产生EPON无源光模块输出的以太网EPON无源光信息。该单元提供针对IEC61850标准规范中的9-1、9-2、9-1扩展和GOOSE信息,完整解析保护模型文件,实现电流电压通道选择、比例系数、ASDU数目、采样率、GOOSE信息的配置,可灵活方便地与不同型号保护接口。

5 新型数字测试仪流程及连接方式

该新型数字测试仪在使用时,对时模块矫正测试仪器的绝对时刻并完成同步的时间测试,中央处理单进行解析、处理;EPON无源光输出/输入单元用于以太网电信号产生EPON光模块输出的以太网无源光信息,中央处理单元再进行处理、判断。测试装置的各单元连接关系如图3所示。

图3 测试装置的各单元连接

EPON无源光输出/输入单元与外部单元之间的连接采用SC接口,减小了接口面积,可以缩小到普通接口面积的1/3。中央处理单元与EPON无源光网络单元之间通过MII数据总线连接。GPS模块通过串口通讯与BF518连接。IEEE1588对时模块通过以太网与BF518连接,BF518获取时间信息。

6 结束语

通过梳理目前智能变电站继电保护数字测试仪的使用现状,针对其一些痛点问题,提出了一种基于EPON网络的智能变电站继电保护测试技术,设计了一款新型继电保护数字测试仪器,并对其内部组成结构及功能进行了详细说明,从而有效地解决了目前变电站继电保护测试不能实现各单元间地通信一致性、自动读取数据以及手工作业量过大导致效率低下等问题。一方面实现了智能变电站继电保护测试的智能化管理,另一方面也改变了变电站的传统通信现状,极大地提高了智能变电站的通信能力,减少了变电站的建设成本。

由于智能变电站继电保护系统的复杂性和繁琐性,在实际的继电保护测试过程中,仍会碰到各种其他问题,比如采用EPON网络所造成的安全性、实时性以及可靠性的问题,可能随着测试设备的精度提高而需要继续加以优化与提升。

猜你喜欢

测试仪无源继电保护
船舶无源目标定位算法研究
SDL Atlas推出第二代HydroPro耐静水压测试仪
使用快速水洗色牢度测试仪检测超细纤维脱落
浅谈变电运行中继电保护问题
电力系统继电保护动作中的故障探析
LPI雷达无源定位暴露区评估方法∗
恒流电池容量测试仪的设计
恒流电池容量测试仪的设计
基于粒子群算法的无源滤波器多目标优化设计
电力系统继电保护技术应用现状的探讨