APP下载

气液两相嘴流新模型及应用

2021-06-06李南星杨成亮

岩性油气藏 2021年3期
关键词:油嘴油压油井

李南星,张 鹏,郑 锐,马 龙,杨成亮

(1.中国石油吐哈油田分公司 气举技术中心,新疆鄯善 838202;2.中国石油吐哈油田分公司工程技术研究院,新疆鄯善 838202;3.中国石油大学(华东)石油工程学院,山东青岛 226580)

0 引言

北阿扎德干油田(北阿油田)位于伊朗胡齐斯坦省阿瓦兹市以西约80 km,其碳酸盐岩油藏具有横向非均质性强、裂缝-孔洞普遍发育和储层内部特征复杂的特点。该油田自投产以来,已经连续自喷采油3 年多,日产油量都在75 000 桶(1桶≈0.159 m3)以上,但随着油田的开发,部分油井由于配产不合理开始出现供液不足及产量大幅下降的现象。因此,合理选择油嘴尺寸、优化单井配产、深入研究自喷井生产状态和自喷井气液两相嘴流模型对该油田的开发具有重要意义。

国内外研究人员结合所在油田的生产特点,建立了很多著名的两相嘴流模型。但由于流体性质、模型实验条件和建模思路的不同,各类评价模型的计算结果存在较大差异。所以有必要对各经验公式[1-9]加以优化和改进,建立适合北阿油田的两相嘴流模型,以满足生产开发的实际需求。

1 气液两相嘴流模型

气液混合物通过油嘴的流动可用气液两相嘴流模型进行预测。正确预测气液混合物通过油嘴的能力是油气井生产系统中合理应用油嘴工艺的基础[10]。气液两相嘴流模型在油气井生产系统中具有广泛的应用,具体表现在:可根据油气井的嘴前压力、嘴后压力、气油比、产量和含水率选择油嘴尺寸,以达到控制油气井产量的目的。对于设置井下节流油嘴的油气井,根据产量、气油比和嘴后压力数据,结合两相管流压降模型,可达到预测嘴前压力和井筒压力分布的目的[11-12],为油气井生产动态预测提供方法,节省井下压力测试费用。对于井下节流和地面节流的油气井,可根据气液比、油嘴尺寸、嘴前压力及嘴后压力等参数预测油气井的产量,掌握油气井生产动态[13]。

目前常用的评价模型主要有Ros 模型[2]、Achong模型[3]、Gilbert 模型[4]、Elgibaly 模型[7]及Osman-Dokla 模型[9]等。由于气液两相嘴流的描述要比单相嘴流复杂得多[14-16],滑脱速率、含水率、黏度、API重度、油气混合物相对密度、摩擦阻力及油藏类型等因子都会影响计算结果[17-20],一般根据测试数据得出的经验公式进行计算(表1)。当流体处于临界流动状态时,油嘴流量不受嘴后压力(回压)的影响,而只与油压、油嘴直径及生产气油比有关,即

式中:a,b,c均为经验常数,不同油区取值不同;D为油嘴直径,mm;Pwh为油压,MPa;Qo为产油量,m3/d;Rp为生产气油比,m3/m3。

表1 临界流动时产量方程中的经验系数Table 1 Empirical coefficient in production rate equation for critical flow

上述模型[1-9]作为经验公式计算且精度要求不高时,具有较强的实用性,但这些模型都是依据特定的油区条件及流体性质建立的,其他油田使用这些模型指导生产会有很大的偏差,因此有必要建立适合北阿油田生产开发的新嘴流模型。

2 新嘴流模型的建立

2.1 产量敏感性分析

北阿油田从上到下发育Sarvak,Kazhdimi 和Gadvan 等3 个主力油层,对于该油田自喷井而言,影响产量的主要因素有模型中提到的井口油压、生产气油比和油嘴直径,同时油气混合物温度、含水率、黏度和API 重度也可能对产量有一定程度的影响。因为该油田Sarvak 储层油品为重质稠油,Kazhdimi 和Gadvan 储层油品为轻质油,不同储层之间的原油API 重度和黏度有较大差别。另外,由于储层缝洞较为发育,且部分油井固井质量存在问题,在生产开发过程中,产油量受含水率的影响较大。

为进一步验证上述参数对油井产量的影响程度,笔者使用PIPESIM 软件的Hagedorn&Brown,Gray,Beggs&Brill(Original/Revised)和Duns&Ros等多相管流相关式,结合油区实测的组分数据及PVT 数据综合计算,在对比现场实际生产数据后发现,Hagedorn&Brown 管流相关式精度最高,故用此相关式计算油气混合物温度、API 重度和含水率对产量的影响。从图1 可以看出,在井口油压、生产气油比和油嘴直径相同的情况下,油气混合物温度对产液量的影响非常小,30 ℃与70 ℃的流体绝对无阻流量仅相差62 桶/d,故认为此参数对产液量的影响可以忽略。

图1 油气混合物温度对产液量的影响Fig.1 Effect of oil-gas mixture temperature on liquid production rate

图2和图3 模拟计算地层压力为30 MPa,采液指数为10 m3/(d MPa),井口油压为4 MPa,油嘴直径为10 mm自喷生产时,不同API 重度和含水率所对应的产量变化趋势。从图2 和图3 可以看出,当井底流压为12 MPa时,与API 重度为10 的原油相比,API 重度为50 的原油日产液量约少250 桶;含水率为0 和50%的日产油量相差约450 桶,这2 项参数是影响自喷井产量的重要因素。黏度数据对产量的影响使用软件很难准确的模拟计算,此处不再给出其趋势图,但考虑其与API 重度对产液量的影响具有很强的一致性,因此认为黏度也是影响产液量的一项重要参数。

图2 API 重度对产液量的影响Fig.2 Effect of API gravity on liquid production rate

图3 含水率对产油量的影响Fig.3 Effect of water cut on oil production rate

2.2 新嘴流模型的建立

常规嘴流模型主要考虑井口油压、生产气油比和油嘴直径对产量的影响,通过实例计算发现,在北阿油田应用中存在较大的偏差。为了最大程度上减小计算误差,新建立的嘴流模型在考虑上述参数影响的基础上,综合考虑含水率、原油API 重度和黏度对产量的影响,运用瑞利法的量纲分析原理[21],在各经验公式[1-9]的基础上加以改进和优化,给出如下通式

式中:fw和ϒ分别为含水率和API 重度;μ为黏度,mPa·s;K,x,y,z,m和s均为拟合系数,通过数据计算得出。

故式(2)的量纲式可写为

由量纲分析原理,由式(3)可得出如下方程组

求解式(4)可得出:x=3,y=1,m=-1。将3个数值代入式(2)可得

通过量纲齐次性分析可以看出,有量纲的物理量指数已经算出,无量纲的物理量指数须通过油田生产数据的多元线性回归求解。因此,对式(5)做如下变形

对式(6)两边取对数可得

n=lnK,式(7)可变形为

式(8)中的n为系数K的对数值。选取的数据包括油田生产初期、稳产期和见水期等不同阶段,并且油嘴尺寸、油压、生产气油比、产量或含水率有较大差异的52 口油井进行统计分析,确保新嘴流模型具有更强的适用性和准确性。新嘴流模型是基于临界生产状态下回归计算的,为避免处于亚临界流态的油井数据带来的误差,在油田运用现场仪器和设备展开两相嘴流临界压力测试,测得的临界压力比值是0.532。表明嘴后压力与嘴前压力比值小于0.532 的35 口油井处于临界生产状态,嘴后压力与嘴前压力比值大于0.532 的17 口油井处于亚临界生产状态。剔除嘴后压力与嘴前压力比值大于0.532 的亚临界油井数据,选取处于临界生产状态的Sarvak 层的1 022 个数据点、Kazhdimi 层的446 个数据点和Gadvan 层的438 个数据点进行线性回归,应用最小二乘法原理,求得式(5)和式(8)系数z,s,n和K的值,并得出北阿油田的两相嘴流新模型

通过回归得出的嘴流公式可以看出:产油量与油嘴直径、API 重度和井口油压为正比例关系,在其他参数相同的条件下,此3 项数值越大,产量越高。反之,产油量与气油比、黏度和含水率均为反比例关系,在其他参数相同的条件下,此3 项数值越大,产量越低。

3 新模型与现有模型对比分析

3.1 质量流速预测能力

以Sarvak 层为例,利用Schüller 等[8]的临界流数据对新模型和其他嘴流模型展开质量流速预测能力评价,模型评价使用34 组临界流数据,并用4个指标定量表征各评价模型对本油田的适用性,分别为平均相对误差δ、平均绝对误差ε、相关系数η和综合评定系数φ。即

式中:Q实际为实际产液量,m3/d;Q计算为模型计算的产液量,m3/d;N为测试总数。

对处于临界生产状态的35 口油井,使用新模型和其他模型分别计算质量流速值,通过和实测值对比后(表2)发现,所有模型预测临界质量流速的平均相对误差都在±8%以内,平均绝对误差都在15%以内,表示所有模型在临界状态下都能在一定程度上预测质量流速,但由于其他模型未考虑API重度和黏度对质量流速的影响,在计算Sarvak 储层油井质量流速时,重质、高黏的稠油会使计算误差增大。新模型综合考虑上述因素的影响,预测的质量流速平均相对误差为1.1%,平均绝对误差为6.5%,相关系数为0.876,综合评定系数0.933,4 项指标均明显优于Gilbert 等其他模型的计算结果。

表2 两相嘴流模型评价质量流速误差统计Table 2 Error statistics of mass flow rate evaluated by two-phase choke flow model

3.2 产液量-油压关系评价

当油井处于临界生产状态,且油嘴尺寸没有变动的情况下,产液量与油压呈线性关系,并随着压力的降低而降低[22-24]。以AZN-020 井为例,使用新模型和其他模型分别评价后发现(图4),新模型计算的产液量-油压关系与实际产液量-油压关系曲线最贴切,相比其他模型精度更高。

图4 产液量与油压关系Fig.4 Relationship between liquid production rate and tubing pressure

3.3 油井产量预测能力

北阿油田3 个生产层位原油性质差别很大,油井含水率也有较大差别。为验证新模型预测油井产量的准确性,使用35 组油井临界流数据,仍然使用上述的4 个指标定量表征各评价模型对本油田的适用性。从表3 中可以看出,新模型预测产量的平均相对误差为2.9%,平均绝对误差为8.4%,相关系数为0.829,综合评定系数为0.900,4 项评价指标均优于其他模型的计算结果。

表3 两相嘴流模型计算产量误差统计Table 3 Error statistics of production rate calculated by two-phase choke flow model

为进一步验证新模型评价的准确性,选取其他7 口不同生产层位、含水率和产量差异较大的油井,使用新模型计算2020 年2 月份累计产量与实际月累计产量进行对比发现(表4),7 口井产量计算的绝对误差都小于10%。适用性评价表明,应用瑞利法的量纲分析原理和多元回归分析法拟合的新嘴流公式,评价不同生产层位和含水率的油井能达到预测产量的需求,为该油田合理选择油嘴尺寸、完成日产指标及延长油井自喷期提供了理论依据,同时对其他类似油田也具有一定的借鉴和指导意义。

表4 嘴流公式计算的累积产量与实际累积产量对比Table 4 Comparison of the calculated cumulative production with actual cumulative production

4 现场应用

对北阿油田自喷井而言,可利用新嘴流模型预测油气井的产量,并做出针对性的整体部署。AZN-036 井于2016 年6 月8 日投产,油嘴直径为12.7 mm,配产为3 000 桶/d。随着其他油井的陆续投产,计划将该井配产降至1 800 桶/d。2016 年11月8 日对该井的油嘴直径进行调整,运用新模型计算该井的油嘴直径为10.027 mm,运用Achong 模型计算的油嘴直径为10.837 mm;Ros 模型计算的油嘴直径为11.524 mm;Gilbert 模型计算的油嘴直径为11.365 mm;Elgibaly 模型计算的油嘴直径为9.249 mm;Osman-Dokla 模型计算的油嘴直径为10.636 mm,最终使用直径为9.922 mm 的油嘴。生产参数优化后,该井的实际产量为1 736 桶/d,新模型计算产量为1 781 桶/d,实际产量与配产量仅相差3.6%。

随着油田的持续开发,部分油井开始见水,按照之前的配产很难完成日产指标。2019年6月17日,计划将该井配产升至2 500 桶/d,运用新模型计算该井的油嘴尺寸为13.674 mm,最终选取13.49 mm的油嘴。从对比图中可以明显地看出(图5),新模型计算产油量与实际相差很小,达到了配产要求。同样,其他油井也存在着配产量与实际产量严重不匹配的情况,通过新模型计算并优化参数后,很好地解决了现场的配产问题。大量现场应用表明,新模型计算不同生产阶段的产油量与现场生产数据具有较好的一致性,不但产油量的变化趋势比较吻合,而且对应数据的平均相对误差和平均绝对误差都在10%以内。

图5 新模型计算产油量与实际产油量对比Fig.5 Comparison of oil production rate calculated by the new model and actual oil production rate

5 结论

(1)通过影响产量的敏感性分析,含水率、原油黏度和API 重度会在一定程度上影响产量,建立嘴流模型须考虑这3 个参数的影响。

(2)综合应用最小二乘法和瑞利法的量纲分析原理,基于多元线性回归分析方法,将含水率、原油黏度和API 重度等3 个参数加入嘴流公式,建立了适用于北阿油田的嘴流新模型,为油田产量计算提供了理论依据。

(3)与其他评价模型相比,新模型预测的质量流速平均相对误差为1.1%,平均绝对误差为6.5%,相关系数为0.876,综合评定系数为0.933;预测产量的平均相对误差为2.9%,平均绝对误差为8.4%,相关系数为0.829,综合评定系数为0.900,新模型的准确率更高。

(4)现场应用表明,运用新模型计算不同生产阶段的产量与现场生产数据具有较好的一致性,不但产量的变化趋势比较吻合,而且对应数据的平均相对误差和绝对误差都在10%以内,相比其他模型更符合油田的生产特征,能满足油井产量计算与预测的需求。为该油田合理选择油嘴尺寸、完成日产指标及延长油井自喷期提供了理论依据,同时对其他类似油田也具有一定的借鉴和指导意义。

猜你喜欢

油嘴油压油井
便携式发动机燃油油压管外检测装置设计
海上气井测试放喷地面油嘴流动分析*
基于OLGA的水下采油树开启分析
发动机冷试油压温度补偿功能的应用
An optimization method:hummingbirds optimization algorithm
新型油井水泥消泡剂的研制
一种油井水泥用抗分散絮凝剂
谈百得燃烧器油嘴技术在石化系统的应用
上海通用雪佛兰科鲁兹轿车变速器故障排除
CO2混相驱油井产能预测方法