长期免耕旱作对冬小麦生长季土壤剖面有机碳含量的影响*
2021-03-26白重九王健波董雯怡刘恩科
白重九,王健波,董雯怡,刘 秀,刘恩科**
长期免耕旱作对冬小麦生长季土壤剖面有机碳含量的影响*
白重九1,王健波2,董雯怡1,刘 秀1,刘恩科1**
(1. 中国农业科学院农业环境与可持续发展研究所,北京 100081;2. 北京市延庆区农业农村局,北京 100142)
依托21a长期免耕秸秆还田定位试验,探究长期免耕加秸秆还田的田间管理方式对冬小麦生长季0−60cm土层内土壤有机碳(SOC)和土壤活性有机碳(MBC、POC、DOC)的影响。试验共设长期免耕秸秆还田(NT)与常规耕作(CT)两种耕作模式,分析0−60cm土层内土壤总有机碳(SOC)、土壤微生物量碳(MBC)、土壤颗粒有机碳(POC)、土壤可溶性碳(DOC)含量的变化。结果表明,在0−20cm土层,NT处理SOC含量显著高于CT处理,其中0−5cm和5−10cm土层平均SOC含量分别增加了81.2 %和52.9 %,冬小麦不同生育期内土壤SOC含量变化不显著;在0−30cm土层内,与CT处理相比,NT显著改变了土壤MBC、POC及DOC在播种前、越冬前、拔节期、开花期和成熟期5个生育阶段的分布情况,且显著提高了5个生育阶段内土壤活性有机碳的含量(P<0.05),其中0−5cm土层内,土壤MBC、POC及DOC含量在各个时期相较于CT处理分别增长60.8%~161.4%、71.8%~141.1%和21.9%~104.4%。0−60cm土层内,两种耕作方式下的SOC、MBC、POC、DOC均随着土壤深度的增大呈下降趋势。说明长期免耕可提高耕作层土壤有机碳含量和小麦生长季活性有机碳的水平,这为旱地土壤有机碳的高效固存提供了理论依据。
土壤有机碳;土壤活性有机碳;免耕秸秆还田;冬小麦;北方旱地
北方旱地农田是冬小麦的主要作业区,其高产稳产对维持粮食安全及农业可持续发展至关重要[1]。传统的土壤翻耕农田管理措施会使土壤结构受到破坏,土壤理化性质受到强制改变,如土壤有机碳降低,土壤酸化等[2−3]。为缓解人类活动对农田系统带来的压力,北方旱区大力推广保护性耕作,如免耕、少耕,以此避免土壤受到过多扰动,保护土壤肥力[4−5]。因此,研究长期免耕对土壤有机碳及其各组分在不同土壤深度和不同生长发育时期的影响有利于了解和提高旱地土壤有机碳含量,对土壤碳库管理具有重要的生产指导意义。
耕作通常会通过影响土壤有机碳的形成和分解过程而导致土壤有机碳的急剧变化[6−7]。包括作物残留、施肥、灌溉和耕作制度在内的农业实践是影响农田土壤有机碳动态的最重要因素[6,8]。Abbas等对小麦种植引起的深层土壤(0−60cm)碳分布的变化观察10a后得出,与传统的覆盖耕作相比,免耕条件下的土壤有机碳含量高出14%,并且认为通过免耕与秸秆覆盖结合,较低的碳损失可以减轻耕作带来的与全球变暖有关的风险[9]。张恒恒等基于北方旱区20a保护性耕作定点试验发现,与传统耕作相比,长期免耕秸秆还田可提高农田土壤的固碳量10.5%,减排大气温室气体5.1%,对改善北方旱区土壤碳库储量起到促进作用[10]。
土壤有机碳因受到土壤自身特性及环境复杂性的限制,有时不能及时并迅速地对土壤管理方式改变作出回应[11],一般情况下,微生物量碳、颗粒有机碳及可溶性有机碳极易被微生物利用,并对土壤环境变化响应较敏感,比如易受土壤耕作方式的影响,因此,可作为反应土壤有机碳微小变化的指标[12]。国内外学者多倾向于将微生物量碳作为土壤生物活性和整体质量状况指标[13],颗粒有机碳作为有机碳周转情况指标[14],可溶性碳含量作为土壤肥力的指标以此综合评价土壤养分和质量状况[15]。多项研究表明了免耕秸秆还田下土壤活性有机碳库的变化,表现为免耕秸秆还田通过避免扰动土壤结构,不仅增加土壤水分、通透性、根际微生物多样性,而且提高土壤微生物量碳、颗粒有机碳和可溶性碳的含量[16−17]。目前有关长期不同耕作方法对土壤有机碳的研究多集中于土壤碳动态及碳组分、土壤呼吸、分布特征等基础研究上,而其对土壤有机碳及其组分的长期影响及各生育期变化鲜有报道。长期免耕条件下土壤有机碳及活性有机碳库在不同生育期的变化,土壤剖面的有机碳特征变化情况,旱区免耕+秸秆还田是否提高土壤有机碳及其组分含量,继而提升旱地土壤肥力等,目前关于这些方面的研究依然较缺乏。本研究基于1992年开始的长期免耕定位试验,分析长期免耕条件下不同生育期及不同土层土壤有机碳及其各组分含量变化,以期为旱区农田碳库可持续管理提供一定依据。
1 材料与方法
1.1 试验点概况
长期定位试验点位于山西省临汾市尧都区(111°62′89″ E,36°02′96″ N,海拔550m),地处半干旱、半湿润季风气候区,年平均气温10.7℃,无霜期180d,年均降水量为555.0mm,多集中在7−9月。试验地土壤有机质含量低,略显碱性,易受频繁的干湿交替气候影响,降水少的季节会加重旱情。该长期定位试验前(1992年)0−20cm土壤理化性质如表1。
表1 土壤基本理化性质(1992年)
1.2 试验设计
采用冬小麦品种临汾225,每年9月底播种,播种量为225kg·hm−2,6月中旬收获,休闲期使用除草剂控制杂草。肥料在冬小麦播种时一次性施入,施肥量为以尿素(N)150kg·hm−2、磷酸氢二铵(P2O5)140kg·hm−2和氯化钾(K2O)62kg·hm−2。试验始于1992年,采用随机区组设计,小区长×宽为50m×6.6m,共330m2。试验田设有常规耕作(CT,Conventional tillage)和免耕秸秆还田(NT,No tillage)两个处理,每处理3次重复,具体实施见表2。
表2 试验处理具体实施方案
1.3 指标测定
长期定位试验20a后,于2012年和2013年分别在冬小麦播种期(9月27日和10月3日)、冬前(12月10日和12月15日)、拔节期(3月27日和4月5日)、开花期(4月28日和5月5日)和成熟期(6月6日和6月10日),每个小区内用直径为5cm的土钻按照“M”五点取样法分别在0−5、5−10、10−20、20−30、30−40、40−50、50−60cm共7个土壤层次进行取样,每个处理3次重复。供测土样去除根系与石块,风干后分别测定土壤有机碳(SOC)含量、微生物量碳(MBC)含量、颗粒性有机碳(POC)含量及可溶性有机碳(DOC)含量。
SOC测定采用重铬酸钾外热法;土壤MBC采用氯仿熏蒸K2SO4浸提法测定;土壤DOC测定按水土比2﹕1用去离子水震荡浸提(高速离心20min,转速为4000r·min−1),然后用TOC-VCPH自动分析仪测定浸提液中有机碳含量;土壤POC分离参照Cambardella(1992)的方法[18],称取25g过100目筛的风干土样混合75mL六偏磷酸钠溶液(5g·L− 1)以140r·min−1的速度震荡15h后,将混合土样过53μm筛并用蒸馏水洗冲至渗漏液澄清,收集筛上的残留物用45℃烘干48h后过0.25mm 筛,最后用元素分析仪测定POC含量。
1.4 数据处理
数据处理和统计分析采用微软Excel 2016、SPSS 22.0和OriginPro 2020软件。多变量比较差异显著性采用最小显著差法(LSD)。
2 结果与分析
2.1 长期免耕秸秆还田下不同生育期的土壤剖面有机碳分布
由图1可知,两种耕作方式下不同生育期的土壤有机碳(SOC)含量均表现为随土层深度的增加不断减小,随生育期变化不大的特点。耕作方式对0−10cm 土层SOC含量影响最为显著(P<0.05),其它土层差异均不显著。在冬小麦各个生育期,NT处理与CT相比,0−5cm和5−10cm土层平均SOC含量分别增加了81.2%和52.9%。10−20cm土层内,CT处理中SOC含量与表层(0−5cm)差异不大,各生育期的下降范围在6.7%%~9.9%,而NT处理SOC含量明显下降,仅为表层(0−5cm)土壤SOC含量的1/2左右。20cm以下土层中,两处理SOC含量均逐渐下降,但降幅不大,10−40cm土层CT处理下SOC含量均略大于NT;40−60cm土层,二者SOC含量水平基本相同。随着冬小麦生育期的推进,虽然0−10cm土层内NT处理SOC含量逐渐增加,CT处理SOC含量上下略微波动,但两种耕作方式下同一土壤层次各个生育期的SOC含量差异均不显著。可见,耕作方式显著影响SOC在不同土层中的变化(P<0.05),长期免耕秸秆还田显著提高了10cm以上土层的SOC含量,但对于同一土层不同生育期SOC含量的影响并不显著。
注:小写字母(a)、大写字母(A)分别表示CT处理和NT处理同一土层不同生育期在0.05水平上的差异性。*、**和***分别表示CT和NT处理在0.05、0.01和0.001水平上显著差异,ns表示无显著差异。误差线为标准误。下同。
Note:Lowercase and capital letter indicate the difference significance of CT treatment and NT treatment in the same soil layer at different growth period at 0.05 level, respectively. *, ** and *** indicate the difference significance between CT and NT treatments at 0.05, 0.01 and 0.001 level, respectively. The error bar is standard error. The same as below.
2.2 长期免耕秸秆还田下不同生育期的土壤剖面微生物量碳分布
由图 2 可知,两种耕作方式下,微生物量碳(MBC)含量均随着土壤层次的加深而减小且速度逐渐变缓。与CT相比,各时期0−5cm土层内NT处理的MBC含量高出了60.8%~161.4%,5−10cm土层平均高出29.2%~117.9%(P<0.05),播种前二者差异最大,开花期差异最小。与CT相比,NT处理30cm以下土壤MBC含量略低或者持平,均低于2mg·kg−1。
不论耕作方式或土壤深度如何,MBC含量在播种后增加并在越冬前达到第一个增长高峰,然后在拔节期降至最低,在开花期达到最大值,但成熟期有所下降。0−10cm土层处,采取CT管理时只有开花阶段MBC含量显著高于其它时期(P<0.05),而NT处理明显改变了这种分布,5个时期彼此的MBC含量差异被明显降低。在播种前、越冬期和拔节期的10−20cm土层,NT处理的MBC含量比CT处理分别高出44.3%、51.0%和48.2%。在20−30cm土层,NT处理的MBC含量比播前和越冬前CT处理分别高出79.7%和112.3%。可见,耕作试验实施20a后,不同生育阶段和一定土壤深度的MBC含量在免耕秸秆还田措施下受到一定影响。
2.3 长期免耕秸秆还田下不同生育期的土壤剖面颗粒性有机碳分布
由图3可见,颗粒性有机碳(POC)含量在0−60cm土层随着土壤深度的增加而下降。耕作方式对0−5cm及5−10cm土层POC含量的影响差异显著(P<0.05),表现为NT>CT,各时期0−5cm土层内NT下POC含量高出CT 71.8%~141.1%,5−10cm土层平均高出了19.8%~73.1%,NT对10−60cm POC含量的影响不显著,相反,CT处理下的POC含量略高于NT。POC含量在两种耕作方式下均表现为开花期最高,其次是成熟期和越冬前,拔节期最低。CT处理下0−20cm土层的POC含量表现为只有开花期显著高于其它时期(P<0.05),且播种前、越冬前、拔节期和成熟期4个生育期彼此间均无显著差异,而NT处理改变了这种极端不均现象,表现为0−5cm土层POC含量的生长阶段差异性仅体现在拔节期明显低于其它时期,5−10cm土层POC含量的生长阶段差异性改变则更大,成熟期显著低于播种前和拔节期,后两者显著低于越冬前和成熟期,10−20cm土层内POC含量未体现出一定的生长阶段差异性。土壤深度>20cm时,除开花期以外,NT处理下的POC含量略低于CT或持平。
2.4 长期免耕秸秆还田下不同生育期的土壤剖面可溶性有机碳分布
图4表明,总体上,土壤可溶性有机碳(DOC)含量在两种耕作方式下均随着土层加深而缓慢下降。各时期0−5cm土层内NT处理下DOC平均含量高出CT处理21.9%~104.4%,5−10cm土层NT较CT高出6.1%~63.9%。从不同生育期的角度看,两种耕作方式下0−60cm土层内DOC含量均在播前最高,且该生育期0−5cm土层内DOC含量表现为NT>CT(P<0.05);随着冬小麦生育期推进,土壤DOC含量均逐渐下降并在拔节期达到最小值,而后在开花期有所上升,成熟期再次下降(不包括CT处理下的0−10cm土层)。此外,0−10cm土层内,CT下5个不同生长阶段的DOC含量彼此间显著差异(P<0.05),越冬前DOC含量显著低于其它时期,而NT处理下则表现为拔节期显著低于播种前、越冬前、开花期及成熟期(P<0.05),在其它土层内(10−20cm、30−60cm)CT处理与NT相似,拔节期显著低于其它时期(P<0.05)。可见,免耕秸秆还田措施下0−20cm土层内DOC含量在不同生长发育阶段受到一定影响。
3 结论与讨论
3.1 讨论
本研究中,耕作方式显著影响SOC、MBC、POC和DOC在冬小麦不同生育阶段的土壤剖面分布。
与常规耕作(CT)相比,长期免耕秸秆还田(NT)下表层土壤(0−20cm)SOC及其组分含量更高。长期以来,其它研究也表明长期免耕秸秆还田下表层土壤有机碳和活性碳库有所增加,这主要归因于在免耕秸秆还田条件下,土壤结构得到改善,水分径流和侵蚀减少,有机质分解减少,秸秆覆盖以及土壤较少受到扰动等因素[19−20],且免耕管理可以增加作物在表层土壤的根系生物量,而这部分土壤是土壤有机碳的主要来源[21]。然而也有部分研究结果相反,表明长期免耕秸秆还田不会提高SOC储量甚至将使其降低,可能与试验地的自然条件,如土壤类型、气候条件、秸秆还田量与耕作方式有关[22−24]。比如湿冷气候下的土壤通气性差会削弱秸秆的分解速率,从而导致免耕秸秆还田对土壤有机碳截存未产生明显影响[25]。本研究NT处理对20cm以下土层SOC含量影响并不显著,CT处理下SOC含量略高于NT,这可能是因为翻耕将冬小麦留茬翻入土壤深层并随时间分解,从而提高土壤20cm以下土层SOC含量[26−27],也有可能因为缺乏新鲜的有机物质供应会阻碍深层SOC的分解,因为深层土壤微生物的基本能源减少[28]。SOC在冬小麦不同生育期均无显著差异,与CT相比,NT处理下SOC呈现稳步缓慢增长趋势,这可能是因为免耕秸秆还田下土壤表面温度的波动较小,微生物活性较常规耕作较为稳定[29],因此土壤SOC矿化进入缓释过程,而常规耕作管理下的SOC含量在不同生育期存在起伏变化,这可能是因为冬小麦在进入越冬期后温度下降,微生物活性、土壤温湿度等受到影响,使该处理下在越冬期和拔节期SOC有略微下降。而天气逐渐回暖后,微生物活性被激活,有机碳才有所上升[30]。相应研究也表明,免耕改善土壤理化性质,促进土壤团聚体形成,降低SOC分解速率,从而提高土壤SOC截存量,这相应解释了免耕条件下土壤表层SOC在不同时期略微升高的现象[31]。
免耕秸秆还田所营造的温热、潮湿、受扰动较少的土壤条件能够显著提高土壤微生物活性,促进土壤中更多活性有机碳形成并增强活性[32],这可能解释了本试验中免耕秸秆还田处理下0−10cm土层MBC、POC、DOC均明显高于常规处理的现象。
MBC作为SOC中最活跃的部分直接影响土壤有机碳的矿化分解过程。与CT相比,NT处理显著影响了不同生育期表层土壤的MBC含量,其变化比SOC更加敏感,这一点与前人研究结果一致[33]。免耕秸秆还田条件下,土壤扰动较少有利于微生物在土壤表层繁殖、积累,并保护土壤结构[10,34],而翻耕条件下因土壤直接暴露在空气中,蓄水保墒效果差,加之试验区属旱区,干燥少雨,土壤微生物量减少以及土壤呼吸下降[35],从而使得不同生育期0−10cm土层的MBC含量垂直分布均匀且明显低于免耕处理。随着生育期推进到开花期,气温回升,微生物活性被激活,因此在越冬前和开花期MBC含量都有增大[30,36]。常规耕作下,10−40cm土层在开花期的MBC均高于免耕处理,这可能是因为土壤翻耕将冬小麦根茬翻入土壤下层后,随着作物残体腐解促进MBC含量升高,并在开花期根际微生物活性被激发,从而在冬小麦开花期达到最大值[37−38],也有学者认为这可能是因为冬小麦的旺盛生长增加了土壤微生物的生物量[39]。越冬前测得的土壤表层MBC含量较高,原因可能是在播种期施肥可能会加速植物残渣沉积并刺激土壤微生物活动[40]。
POC易受耕作方式影响,在土壤中周转速度较快并能敏感响应土壤中植物残体及根系分布的变化。与CT相比,免耕秸秆还田处理0−10cm土壤下POC在不同生育期有明显变化。在冬小麦生长发育过程中,0−10cm土层内POC含量先增大后减小而后在开花期达到最大值后继续减小,这可能是因为越冬前秸秆在微生物的作用下分解导致POC含量升高,而后在拔节期作物生长旺盛,POC活性高,作物在进入拔节期后,根系分泌物增加,微生物活性增强,使得POC含量再次升高[27,41]。而常规处理下拔节期0−20cm土层内POC含量高于免耕处理,说明免耕秸秆还田改变了POC含量在不同生育期分布不均的现象。
土壤可溶性碳(DOC)作为养分移动的载体在SOC周转过程中扮演重要角色。本研究中,免耕秸秆还田处理下DOC均呈现在播种前期高,拔节期最低,这可能是因为休闲期后秸秆分解进入土壤中的有机碳未被微生物消耗完全,仍有少量残余。DOC含量在越冬后有明显增长可能是因为随着逐渐进入夏季,气温升高,土壤微生物被激活,加速土壤有机质矿化从而释放土壤中DOC[42−43]。当冬小麦生长从拔节期逐渐过渡到开花期时,能被作物吸收的有机碳比例降低。前人研究也表明,温湿度、降水、微生物活性和外界有机物质输入量及质量都会引起土壤DOC含量随着季节变化呈现一定规律[44−45]。
相关研究也表明,免耕秸秆还田可以增加活性有机碳库的含量,进而改善土壤保水性,促进生物活性和养分储存,从而提高土壤质量和生产力,并最终减少土壤侵蚀[39]。常规耕作和免耕秸秆还田两个处理10cm以下土壤中活性有机碳库含量整体上无显著差异,甚至部分土层常规耕作下的活性有机碳库含量略高于免耕秸秆还田处理,这与陈强等的研究结果并不一致[46−47],可能与免耕秸秆还田时间或土壤类型有关[48],也可能与翻耕破坏土壤物理结构从而加速了低活性有机碳的分解,以及作物残留根系随着翻耕进入土壤深层后缓慢分解,加之活性有机碳库十分敏感,使得常规耕作处理下的活性有机碳库略高于免耕秸秆还田处理[49]。
3.2 结论
(1)在0−60cm土层,常规耕作和免耕秸秆还田两种耕作方式下SOC、MBC、POC及DOC含量随着土层深度的增加而减小。免耕秸秆还田改变了土壤SOC、MBC、POC及DOC含量的垂直分布。与常规耕作相比,免耕秸秆还田处理能够显著提高耕作层内SOC、MBC、POC及DOC含量,而对耕作层以下SOC、MBC、POC及DOC含量影响不显著。
(2)免耕秸秆还田下,土壤SOC、MBC、POC及DOC含量在冬小麦不同生育阶段均受到影响。免耕秸秆还田处理显著改变了0−30cm土层MBC、POC及DOC在播种前、越冬前、拔节期、开花期和成熟期5个生育阶段的分布情况,且显著提高了土壤有机碳及其组分在各生育阶段的含量,而对不同生育期30cm以下土层土壤有机碳及其组分的影响不大。
[1] 马小龙,佘旭,王朝辉,等.旱地冬小麦产量差异与栽培、施肥及主要土壤肥力因素的关系[J].中国农业科学,2016, 49(24):4757-4771.
Ma X L,Yu X,Wang Z H,et al.Yield variation of winter wheat and its relation to cultivation, fertilization, and main soil fertility factors[J].Scientia Agricultura Sinica,2016, 49(24):4757-4771.(in Chinese)
[2] 齐华,李从锋,赵明,等.我国北方旱作农田保护性耕作发展与展望[J].作物杂志,2020(2):16-19.
Qi H,Li C F,Zhao M,et al.Developments and prospects of conservation tillage in the dryland of Northern China[J]. Crops,2020(2):16-19.(in Chinese)
[3] 郑洪兵,齐华,刘武仁,等.玉米农田耕层现状、存在问题及合理耕层构建探讨[J].耕作与栽培,2014(5):39-42.
Zhneg H B,Qi H,Liu W R,et al.Present and problem of tillage layer of maize cropland and discussion of optimum tillage layer[J].Tillage and Cultivation,2014(5):39-42.(in Chinese)
[4] 魏小波,何文清,黎晓峰,等.农田土壤有机碳固定机制及其影响因子研究进展[J].中国农业气象,2010,31(4): 487-494.
Wei X B,He W Q,Li X F,et al.Review on the mechanism of soil organic carbon sequestration and its influence factors in cropland soils[J].Chinese Journal of Agrometeorology, 2010,31(4):487-494.(in Chinese)
[5] 刘巽浩.泛论我国保护性耕作的现状与前景[J].农业现代化研究,2008(2):208-212.
Liu X H.Present situation and prospect of conservation tillage in China[J].Research of Agricultural Modernization, 2008(2):208-212.(in Chinese)
[6] Yang Y S,Xie J S,Sheng H,et al.The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China[J].Journal of Geographical Sciences,2009,19: 49-57.
[7] Lal R,Negassa W,Lorenz K.Carbon and agriculture - carbon sequestration in soils[J].Current Opinion in Environmental Sustainability,2015,15(5423):79-86.
[8] Smith P,Martino D,Cai Z,et al.Greenhouse gas mitigation in agriculture philosophical transactions of the royal society of London[J].Biological Sciences(Series B),2008, 363:789-813.
[9] Abbas F,Hammad H M,Ishaq W,et al.A review of soil carbon dynamics resulting from agricultural practices[J]. Journal of Environmental Management,2020,268:110-319.
[10] 张恒恒,严昌荣,张燕卿,等.北方旱区免耕对农田生态系统固碳与碳平衡的影响[J].农业工程学报,2015,31(4): 240-247.
Zhang H H,Yan C R,Zhang Y Q,et al.Effect of no tillage on carbon sequestration and carbon balance in farming ecosystem in dryland area of northern China[J]. Transactions of the CSAE,2015,31(4):240-247.(in Chinese)
[11] Haynes R J.Labile organic matter fractions as central components of the quality of agricultural soils:an overview[J].Advances in Agronomy,2005,85:221-268.
[12] 区惠平,何明菊,朱桂玉,等.耕作方式对稻田土壤有机碳转化的影响[J].华南农业大学学报,2011,32(1):1-6.
Qu H P,He M J,Zhu G Y,et al.Effect of tillage on conversion of soil organic carbon in paddy soil[J].Journal of South China Agricultural University,2011,32(1):1-6.(in Chinese)
[13] 张英英,蔡立群,武均,等.不同耕作措施下陇中黄土高原旱作农田土壤活性有机碳组分及其与酶活性间的关系[J].干旱地区农业研究,2017,35(1):1-7.
Zhang Y Y,Cai L Q,Wu J,et al.Tlle relationship between soil labile organic carbon fractions and the enzyme activities under different tillage measures in the Loess Plateau of central Gansu province[J].Agricultural Research in the Arid Areas,2017,35(1):1-7.(in Chinese)
[14] 武均,蔡立群,张仁陟,等.耕作措施对旱作农田土壤颗粒态有机碳的影响[J].中国生态农业学报,2018,26(5):728- 736.
Wu J,Cai L Q,Zhang R Z.Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province[J].Chinese Journal of Eco-Agriculture,2018,26(5): 728-736.(in Chinese)
[15] 徐明岗,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化[J].土壤学报,2006(5):723-729.
Xu M G,Yu R,Wang B R.Labile organic matter and carbon management index in red soil under long-term fertilization[J].Acta Pedologica Sinica,2006(5):723-729.(in Chinese)
[16] 蔡太义,黄耀威,黄会娟,等.不同年限秸秆覆盖对土壤活性有机碳和碳库管理指数的影响[J].生态学杂志,2011, 30(9):1962-1968.
Cai T Y,Huang Y W,Huang H J,et al.Soil labile organic carbon and carbon pool management index as affected by different years no-tilling with straw mulching[J].Chinese Journal of Ecology,2011,30(9):1962-1968.(in Chinese)
[17] 祁剑英,马守田,刘冰洋,等.保护性耕作对土壤有机碳稳定化影响的研究进展[J].中国农业大学学报,2020,25(1): 1-9.
Qi J Y,Ma S T,Liu B Y,et al.Advances in effects of conservation tillage on soil organic carbon stabilization[J]. Journal of China Agricultural University,2020,25(1):1-9.(in Chinese)
[18] Cambardella C A,Elliott E T.Particulate soil organic-matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal,1992,56:777-783.
[19] Kahlon M S,Lal R,Ann-Varughese M.Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio[J].Soil & Tillage Research,2013,126:151-158.
[20] Ussiri D A N,Lal R.Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J].Soil Tillage Research,2009,104:39-47.
[21] Liu E K,Chen B Q,Yan C R,et al.Seasonal changes and vertical distributions of soil organic carbon pools under conventional and no-till practices on Loess Plateau in China[J].Soil Science Society of America Journal,2015, 79:517-526.
[22] Yang X M,Drury C F,Wander M M,et al.Evaluating the effect of tillage on carbon sequestration using the minimum detectable difference concept1[J].Pedosphere,2008,18:421- 430.
[23] Hermle S,Anken T,Leifeld J,et al.The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions[J].Soil & Tillage Research,2008, 98:94-105.
[24] Deen B,Kataki P K.Carbon sequestration in a long-term versus conventional tillage experiment[J].Tillage Research, 2003,74(2): 143-150.
[25] Gregorich E G,Rochette P,Vandenbygaart A J,et al.Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada[J].Soil & Tillage Research,2005,83:53-72.
[26] Dolan M S,Clapp C E,Allmaras R R,et al.Soil organic carbon and nitrogen in a Minnesota soil as related to tillage,residue and nitrogen management[J].Soil and Tillage Research,2006,89:221-231.
[27] Blanco-Canqui H,Lal R.No-tillage and soil-profile carbon sequestration:an on-farm assessment[J].Soil Science Society of America Journal,2008,72:693-701.
[28] Fontaine S,Barot S,Barré P,et al.Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature,2007,450:277-280.
[29] Wang J Z,Wang X J,Xu M G,et al.Crop yield and soil organic matter after long-term straw return to soil in China[J].Nutr Cycl Agroecosys.,2015,102:371-381.
[30] 杨钊,尚建明,陈玉梁.长期秸秆还田对土壤理化特性及微生物数量的影响[J].甘肃农业科技,2019(1):13-20.
Yang Z,Shang J M,Chen Y L.Effects of long-term straw return on soil physical and chemical characteristics and microbial quantity[J].Gansu Agricultural Science and Technology,2019(1):13-20.(in Chinese)
[31] Marland G,Garten C T,Post W M,et al.Studies on enhancing carbon sequestration in soils[J].Energy,2004, 29:1643-1650.
[32] Zhang B,Yao S H,Hu F.Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition[J]. European Journal of Soil Science,2010,58:1482-1492.
[33] Pandey C B,Chaudhari S K,Dagar J C,et al.Soil N mineralization and microbial biomass carbon affected by different tillage levels in a hot humid tropic[J].Soil & Tillage Research,2010,110:33-41.
[34] 陈智,蒋先军,罗红燕,等.土壤微生物生物量在团聚体中的分布以及耕作影响[J].生态学报,2008,28(12):5964- 5969.
Chen Z,Jiang X J,Luo H Y,et al.Distribution of soil microbial biomass within soil water -stable aggregates and the effects of tillage[J].Acta Ecologica Sinica,2008,28(12): 5964-5969.(in Chinese)
[35] 任景全,王连喜,陈书涛,等.免耕与翻耕条件下农田土壤呼吸的比较[J].中国农业气象,2012, 33(3):388-393.
Ren J Q,Wang L X,Chen S T,et al.Comparison of soil respiration from farmlands under no tillage and tillage regimes[J].Chinese Journal of Agrometeorology,2012,33(3): 388-393.(in Chinese)
[36] 苏丽丽,徐文修,李亚杰,等.耕作方式对干旱绿洲滴灌复播大豆农田土壤有机碳的影响[J].农业工程学报,2016, 32(4):150-156.
Su L L,Xu W X,Li Y J,et al.Effects of different tillage methods on soil organic carbon in soybean soil of drip irrigation in arid oasis[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(4):150-156. (in Chinese)
[37] Franchini J C,Crispino C C,Souza R A,et al. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern[J].Brazil Soil Tillage Research,2016,92:18-29.
[38] Hungria M,Franchini J C,BrandãO-Junior O,et al.Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems[J].Applied Soil Ecology,2009,42:288-296.
[39] Liang B,Yang X Y,He X H,et al.Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth[J]. Biology and Fertility of Soils,2011,47:121-128.
[40] Jiang P,Xu Q,Xu Z,et al.Seasonal changes in soil labile organic carbon pools within a phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J].Forest Ecol Manag,2006,236:30-36.
[41] Yoo G,Wander M M.Tillage effects on aggregate turnover and sequestration of particulate and humified soil organic carbon[J].Soil Science Society of America Journal,2008, 72:670-676.
[42] 陶晓,樊伟,杨春,等.城市不同森林土壤溶解性有机碳和微生物生物量碳特征[J].生态学杂志,2016,35(12):3191- 3196.
Tao X,Fan W,Yang C,et al.Characteristics of soil dissolved organic carbon and microbial biomass carbon in different urban forest communities[J].Chinese Journal of Ecology, 2016,35(12):3191-3196.(in Chinese)
[43] 刘帅,陈玥希,孙辉,等.西南亚高山-高山海拔梯度上森林土壤水溶性有机碳时间动态[J].西北林学院学报,2015, 30(1):33-38.
Liu S,Chen Y X,Sun H,et al.Temporal dynamics of DOC in forest soil along an elevational gradient of subalpine-alpine in the Southwestern China[J].Journal of Northwest Forestry University,2015,30(1):33-38.(in Chinese)
[44] 陈佳俐,钟羡芳,刘炜杰,等.福州江滨公园不同植被类型土壤可溶性有机碳含量的季节动态[J].亚热带资源与环境学报,2016,11(3):88-94.
Chen J L,Zhong X F,Liu W J,et al.Seasonal dynamics of soil dissolved organic carbon content of urban park vegetations in Fuzhou[J].Journal of Subtropical Resources and Environment,2016,11(3):88-94.(in Chinese)
[45] Wood S A.Leveraging a new understanding of how belowground food webs stabilize soil organic matter to promote ecological intensification of agriculture(Chapter 4)[M]//Soil Carbon Stage. Elsevier,2018:117-136.
[46] 陈强,Yuriy S K,陈渊,等.少免耕土壤结构与导水能力的季节变化及其水保效果[J].土壤学报,2014,51(1):11-21.
Chen Q,Yuriy S K,Chen Y,et al.Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage[J].Acta Pedologica Sinica,2014,51(1):11-21.(in Chinese)
[47] 杨永辉,武继承,张洁梅,等.耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J].中国生态农业学报,2017, 25(2):258-266.
Yang Y H,Wu J C,Zhang J M,et al.Effect of tillage method on soil water infiltration, organic carbon content and structure[J].Chinese Journal of Eco-Agriculture,2017,25(2): 258-266.(in Chinese)
[48] 高建华,张承中.不同保护性耕作措施对黄土高原旱作农田土壤物理结构的影响[J].干旱地区农业研究,2010, 28(4):192-196.
Gao J H,Zhang C Z.The effects of different conservation tillage on soil physical structures of dry farmland in the Loess Plateau[J].Agricultural Research in the Arid Areas,2010,28(4):192-196.(in Chinese)
[49] 李玉梅,王根林,孟祥海,等.秸秆还田方式对旱地草甸土活性有机碳组分的影响[J/OL].农业资源与环境学报,2020. https://doi.org/10.13254/j.jare.2020.0154.
Li Y M,Wang G L,Meng X H,et al.Effects on labile organic carbon distribution under different straw returning methods in dryland meadow soil[J/OL].Journal of Agricultural Resources and Environment,2020.https://doi.org/10.13254/j.jare.2020.0154.
Effects of Long-Term No-Tillage on Soil Organic Carbon Contents of Winter Wheat in Different Soil Layers and Growth Period
BAI Chong-jiu1, WANG Jian-bo2, DONG Wen-yi1, LIU Xiu1, LIU En-ke1
(1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2.Yanqing District Bureau of Agriculture and Rural Affairs of Beijing Municipality, Beijing 100142)
Based on a 21-year long-term no-tillage and straw-returning test, aimed to analyze the effects of long-term no-tillage and straw-returning on soil SOC(Soil organic carbon) and its components in the surface and subsoil(0−60cm) in the winter wheat growing period. This long-term fixed experiment started in 1992,included straw-returning under no-tillage(NT) and conventional tillage(CT), two field management methods. The chemical fertilizer was applied to the two treatment are same. After 20-year later, soil samples in different layers and wheat growth period were collected. Soil organic carbon(SOC), soil microbial biomass carbon(MBC), and soil particulate organic carbon(POC) were measured, soil soluble carbon(DOC) content in different soil layers and growth period. Compared with CT, NT significantly changed the distribution of MBC, POC, and DOC of 0−30cm soil layer in the five growth stages before sowing, before winter, jointing, anthesis, and maturity. Furthermore, NT significantly improved their soil contents in the five stages(P<0.05), specifically, in comparison, MBC, POC, and DOC in the five growth stages increased averagely by 60.8%−161.4%, 71.8%−141.1%, and 21.9%−104.4%, respectively. Besides, there is a great influence on SOC content in the 0−20cm soil layer by applying no-tillage and straw-returning; the average SOC content of 0−5cm and 5−10cm soil increased 81.2% and 52.9%, respectively. However, this similar influence did not appear in the 5-growth period. In the layer of 0−60cm, the contents of SOC, MBC, POC, and DOC under two tillage methods all showed a downward trend with soil depth growth. The organic carbon content of surface soil(0−20cm) and the level of active organic carbon(MBC, POC, DOC) in the wheat-growing time were significantly improved after applying no-tillage and straw-returning. This study showed that long-term no-tillage could raise the soil organic carbon content and active organic carbon level during the wheat growing season, which provides a theoretical basis for the efficient storage of organic carbon in dryland soil.
Soil organic carbon; Soil labile organic carbon; No-tillage straw returning; Winter wheat; Dryland in the North
10.3969/j.issn.1000-6362.2021.03.001
白重九,王健波,董雯怡,等.长期免耕旱作对冬小麦生长季土壤剖面有机碳含量的影响[J].中国农业气象,2021,42(3):169-180
2020−09−18
国家自然科学基金国际(地区)合作与交流项目(31961143017);国家自然科学基金面上项目(31470556;31871575);国家自然科学基金青年基金项目(41601328);公益性行业(农业) 科研专项项目(201503120);中国农业科学院生物节水与旱作农业创新团队项目;中国农业科学院农业环境与可持续发展研究所中央级公益性科研院所基本科研业务费专项资金项目
刘恩科,研究员,研究方向为旱地农业,E-mail:liuenke@caas.cn
白重九,E-mail: 1208593325@qq.com