洋葱伯克霍尔德菌耐药机制的研究进展
2021-03-25方幸刘雪琳丁培丽
方幸 刘雪琳 丁培丽
【摘要】 洋葱伯克霍尔德菌是临床常见的机会致病菌,其感染多见于肺囊性纤维化及免疫抑制患者,可引起呼吸系统、泌尿系统、血流感染、颅内感染等,尤其肺内感染造成不可逆的肺組织损伤。目前对于洋葱伯克霍尔德菌治疗的抗生素选择较少,同时由于其耐药率高,很难被清除,因此临床对于洋葱伯克霍尔德菌感染的治疗手段有限且效果不佳。本文就该细菌的耐药机制进行总结,为基础及临床研发并使用抗菌药物提供相关思路。
【关键词】 洋葱伯克霍尔德菌 耐药 外膜通透屏障 外排泵系统 β-内酰胺酶
Research on Drug Resistance Mechanism of Burkholderia Cepacia/FANG Xing, LIU Xuelin, DING Peili. //Medical Innovation of China, 2021, 18(32): -188
[Abstract] Burkholderia cepacia is one of the most common clinical opportunistic pathogens, it often affects patients with pulmonary cystic fibrosis and the patients who are in immunosuppression, it can cause respiratory, urinary, bloodstream, and intracranial infections, especially in the lungs, the infection causes irreversible lung tissue damage. At present, there are few antibiotics for the treatment of Burkholderia cepacia, at the same time, due to its high drug resistance rate, it is difficult to be eliminated, therefore, the clinical treatment of Burkholderia cepacia infection is limited and the effect is not good. This article summarize the drug resistance mechanism of this kind of bacteria, and provide relevant ideas for basic and clinical development and use of antibacterial drugs.
[Key words] Burkholderia cepacia Drug resistance Outer membrane diffusion Efflux pump β-lactamase
First-author’s address: The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
doi:10.3969/j.issn.1674-4985.2021.32.046
洋葱伯克霍尔德菌是水、土壤和植物中普遍存在的革兰阴性非乳糖发酵细菌,即使在有机溶剂、防腐剂或者低营养条件下仍能存活数月,且对于消毒剂有很好的耐受性[1],被认为是肺囊性纤维化及免疫抑制患者院内感染的高危条件致病菌[2]。洋葱伯克霍尔德菌可造成颅内感染、肺炎、泌尿系统感染,甚至血流感染,其感染后的特征为多重固有的抗生素耐药[3],因此洋葱伯克霍尔菌感染后尤其是对于肺囊性纤维化及免疫抑制患者难以治疗且无法使用抗生素达到有效根除[4]。
细菌已经进化出多种耐药策略,且可同时协同使用不同的生物机制(包括先天性及获得性)来达到更高的耐药性[5],包括(1)细菌本身细胞膜介导的抗菌药物的低渗透性;(2)细胞的主动流出系统;(3)通过底物切割或者化学修饰如磷酸化、乙酰化、腺苷化等作用造成酶失活;(4)通过基因突变来改变靶目标,或者使用耐药靶目标替代易感靶目标;(5)特异性结合蛋白进行药物隔绝;(6)通过增加基因转录导致细菌增殖。而洋葱伯克霍尔德菌对多类抗生素的高水平的先天性及获得性耐药机制很大程度归因于:外膜通透性的降低[6-8],修饰酶(如β-内酰胺酶)的产生[9],抗生素靶点改变及外排泵系统的作用[10-12]。
1 外膜通透屏障降低
洋葱伯克霍尔德菌耐抗菌药物的第一道防线即为外膜通透屏障,这是细菌固有的抗生素耐药性,是一种被动机制,由其本身的理化特性决定,不受暴露于抗菌药物种类及量的影响,是一种不对称的双层膜,研究表明,洋葱伯克霍尔德菌的细胞膜主要组成部分为脂多糖(LPS)和限制性孔蛋白,这种结构是细菌对于多粘菌素耐药的主要决定因素[13],限制性孔蛋白成分可以减少药物穿透。是细菌对抗菌药物耐药的促成机制。细菌外膜通透屏障的降低大大减少了抗菌药物的作用,这是细菌耐药的内在固有机制,暂时并无相关针对洋葱伯克霍尔德菌的这种外膜通透屏障的抗菌药物研究。这种抗生素内在抗性不仅本身可以形成对抗菌药物的防线,同时大多数的细菌外膜上含有多种药物流出泵系统,可以组成并诱导主动外排系统的表达[14-15],负责药物从细胞中主动排出。
2 外排泵系统
目前细菌耐药的外排泵机制研究是一个重要的趋势,很多研究发现耐药-结节-分化(RND)外排系统的表达是革兰阴性菌对多类抗菌药物耐药的主要原因,而洋葱伯克霍尔德菌中CeoAB-OpcM基因系统属于革兰阴性杆菌的RND外排泵家族[16],RND外排泵的过度表达可促使抗菌药物被排出体外,从而引起多重耐药。该菌外排泵系统一般由膜融合蛋白(membrane fusion protein,MFP)、RND转运蛋白、外膜通道蛋白三个部分组成,当细菌遇到抗菌药物时,细菌的RND转运蛋白具有识别抗菌药物功能,与膜融合蛋白和外膜通道形成复合物,直接将药物转运到细胞外[17]。
一项对于洋葱伯克霍尔德菌的研究结果显示,外排泵系统在该种细菌中普遍存在且高表达,同时在此种菌内发现了14个RND泵编码基因[11]。至少6个活跃的RND泵系統(RND-1、RND-3、RND-4、RND-8、RND-9、RND-10)与洋葱伯克霍尔德菌的抗性相关[18-22],RND-3和RND-4对于头孢他啶、氯霉素、喹诺酮类(环丙沙星、左氧氟沙星)及妥布霉素、甲氧苄啶/磺胺甲恶唑等抗菌药物的耐药性介导具有重要意义[19,23-24],且文献[25-27]指出RND-4和RND-9的过表达不仅影响了细菌的耐药性,同时也提高了细菌对洗必泰等消毒剂的耐受,这也是洋葱伯克霍尔德菌耐药,耐消毒剂,甚至在院内造成爆发流行的原因之一。这些外排泵的作用协同外膜通透屏障很大程度上增加了洋葱伯克霍尔德菌对于抗菌药物及其他有毒化合物的抵抗性。
然而,这些高表达的RND外排泵系统的研究对于临床治疗耐药性菌株的贡献却尚未得到确切的研究报道[18,28-29],由于RND外排泵对于外排底物的广泛性,造成更多的抗菌药物被排出体外,引起多重耐药,因此对于RND外排泵抑制剂的研究造成了很大的阻碍。
3 修饰酶产生——β内酰胺酶产生
β-内酰胺酶在细菌耐β-内酰胺类抗菌药物中发挥了重要作用,洋葱伯克霍尔德菌对于β-内酰胺类抗生素的首次耐药报道是对于该菌株的PenA-PenR基因系统研究中发现的[9],此细菌至少能够编码A、C、D类β-内酰胺基因,可诱导β-内酰胺酶[30],借助分子中的丝氨酸活性位点产β-内酰胺酶,结合抗生素中的β-内酰胺环,使其对细菌失活[31],且这些基因可以通过群体感染性产生水平转移,使得同种其他细菌中同时产生该编码基因,诱导整体对β-内酰胺类抗生素产生耐药[32]。
Pen-A类基因突变导致A类β-内酰胺酶过表达,这是假单胞菌属的获得性头孢他啶、美罗培南等药物耐药的主要原因[33-39],该基因位于菌株2号染色体上,其突变或经过关键氨基酸残基化等修饰后造成头孢菌素类和美罗培南敏感性降低[40]。除此之外,编码AmpC(AmpCβ-内酰胺酶,又称头孢菌素类酶,其具有水解广谱头孢菌素类抗菌药物活性的作用)基因突变可导致AmpC在许多革兰阴性杆菌中过表达,同时由于AmpC的上调,使得该种细菌AmpD(一种细胞壁循环酶)的过表达,加之其倾向于可逆的重复突变,可反向激活AmpC靶目标的转录,优化菌株的调控系统,提高菌株对β-内酰胺类抗生素耐药性[41]。因此,针对该基因位点,研究如何阻断其可逆的重复突变,或许可以抑制细菌的此种耐药机制。
4 抗生素靶基因的突变
洋葱伯克霍尔德菌抗生素靶基因突变引起的耐药性大多与氟喹诺酮类药物和甲氧苄啶耐药有关。甲氧苄啶的抗菌作用靶目标为二氢叶酸还原酶,早在1989年,Burns等[10]就发现甲氧苄啶无法抑制来自耐药洋葱伯克霍尔德菌菌株的蛋白。而喹诺酮的耐药机制研究中发现对于环丙沙星的耐药菌株中发现大多数菌株出现了Thr83Ile或Asp87Asn的基因突变,导致的结果为菌株对于环丙沙星最小抑菌浓度(MIC)增加12~64倍,而Ser80Leu突变可直接导致环丙沙星MIC>256 μg/mL[42]。这种靶基因的突变大大减少了抗菌药物的抗菌活性,是导致细菌耐药的另一机制。
综上所述,作为重要的条件致病菌,洋葱伯克霍尔德菌感染呈上升趋势,且由于其固有及获得性的耐药机制共同协同造成广泛耐药,且多数存在这些共同因素结合作用,治疗难度加大,这也为研究人员和临床医生建立了独特且困难的挑战,由于这些机制的相互作用尚未得到更好地进一步阐述,因此对于洋葱伯克霍尔德感染的抗菌治疗有待研究,为洋葱伯克霍尔德菌感染的患者提供更好的临床治疗策略。
参考文献
[1] Torbeck L,Raccasi D,Guilfoyle D,et al.Burkholderia cepacia: This Decision Is Overdue[J].PDA Journal of Pharmaceutical Science and Technology,2011,65(5):535-543.
[2] Abbott I J,Peleg A Y.Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies[J].Seminars in Respiratory and Critical Care Medicine,2015,36(1):99-110.
[3] Quinn J P.Clinical problems posed by multiresistant nonfermenting gram-negative pathogens[J].Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America,1998,27(Suppl 1):S117-124.
[4] Lord R,Jones A M,Horsley A.Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation[J].Cochrane Database Systematic Review,2016(1):CD009529.
[5] Blair J M,Webber M A,Baylay A J,et al.Molecular mechanisms of antibiotic resistance[J].Microbiology Spectrum,2016,13(1):42-51.
[6] Aronoff S C.Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a β-lactam-resistant mutant and in resistant cystic fibrosis isolates[J].Antimicrobial Agents and Chemotherapy,1988,32(11):1636-1639.
[7] Moore R A,Hancock R E.Involvement of outer membrane of Pseudomonas cepacia in aminoglycoside and polymyxin resistance[J].Antimicrobial Agents and Chemotherapy,1986,30(6):923-926.
[8] Parr T R Jr,Moore R A,Moore L V,et al.Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia[J].Antimicrobial Agents and Chemotherapy,1987,31(1):121-123.
[9] Trépanier S,Prince A,Huletsky A.Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator[J].Antimicrobial Agents and Chemotherapy,1997,41(11):2399-2405.
[10] Burns J L,Lien D M,Hedin L A.Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia[J].Antimicrobial Agents and Chemotherapy,1989,33(8):1247-1251.
[11] Guglierame P,Pasca M R,De R E,et al.Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome[J].BMC Microbiol,2006,20(6):66.
[12] Schweizer H P.When it comes to drug discovery not all Gram-negative bacterial biodefence pathogens are created equal: Burkholderia pseudomallei is different[J].Microbial Biotechnology,2012,5(5):581-583.
[13] Olaitan A O,Morand S,Rolain J M.Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria[J].Front Microbiol,2014,26(5):643.
[14] Nikaido H.Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria[J].Seminars in Cell & Developmental Biology,2001,12(3):215-223
[15] Ryan B M,Dougherty T J,Beaulieu D,et al.Efflux in bacteria: what do we really know about it?[J].Expert Opinion on Investigational Drugs,2001,10(8):1409-1422.
[16] Li X Z,Nikaido H,Poole K.Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa[J].Antimicrobial Agents and Chemotherapy,1995,39(9):1948-1953.
[17] Lomovskaya O,Watkins W J.Efflux pumps:their role in antibacterial drug discovery[J].Current Medicinal Chemistry,2001,8(14):1699-1711.
[18] Bazzini S,Udine C,Sass A,et al.Deciphering the role of RND efflux transporters in Burkholderia cenocepacia[J/OL].Public Library of Science One,2011,6(4):e18902.
[19] Buroni S,Matthijs N,Spadaro F,et al.Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells[J].Antimicrobial Agents and Chemotherapy,2014,58(12):7424-7429.
[20] Nikaido H,Pagès J M.Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria[J].FEMS Microbiology Review,2012,36(2):340-363.
[21] Buroni S,Pasca M R,Flannagan R S,et al.Assessment of three Resistance- Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance[J].BMC Microbiology,2009,9:200.
[22] Fernández L,Hancock R W.Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance[J].Clinical Microbiology Review,2012,25(4):661-681.
[23] Tseng S P,Tsai W C,Liang C Y,et al.The contribution of antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates: an emphasis on efflux pump activity[J/OL].Public Library of Science One,2014,9(8):e104986.
[24] Scoffone V C,Spadaro F,Udine C,et al.Mechanism of resistance to an antitubercular 2-thiopyridine derivative that is also active against Burkholderia cenocepacia[J].Antimicrobial Agents and Chemotherapy,2014,58(4):2415-2417.
[25] Coenye T,Van A H,Peeters E,et al.Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms[J].Antimicrobial Agents and Chemotherapy,2011,55(5):1912-1919.
[26] Nunvar J,Hogan A M,Buroni S,et al.Burkholderia CenocepaciaThe Effect of 2-Thiocyanatopyridine Derivative 11026103 on : Resistance Mechanisms and Systemic Impact[J].Antibiotics (Basel),2019,8(4):159.
[27] Scoffone V C,Ryabova O,Makarov V,et al.Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia[J].Front Microbiol,2015,6:815.
[28] Buroni S,Pasca M R,Flannagan R S,et al.Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance[J].BMC Microbiology,2009,9:200.
[29] Nair B M,Cheung K J,Griffith A,et al.Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar Ⅲ (B. cenocepacia)[J].The Journal of Clinical Investigation,2004,113(3):464-473.
[30] Poirel L,Rodriguez-Martinez J M,Plésiat P,et al.Naturally occurring Class A ss-lactamases from the Burkholderia cepacia complex[J].Antimicrobial Agents and Chemotherapy,2009,53(3):876-882.
[31] Rhodes K A,Schweizer H P.Antibiotic resistance in Burkholderia species[J].Drug Resistance Updates,2016,9(28):82-90.
[32] Bush K,Jacoby G A.Updated functional classification of β-lactamases[J].Antimicrobial Agents and Chemotherapy,2010,54(3):969-976.
[33] Tribuddharat C,Moore R A,Baker P,et al.Burkholderia pseudomallei class a beta-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition[J].Antimicrobial Agents and Chemotherapy,2003,47(7):2082-2087.
[34] Sam I C,See K H,Puthucheary S D.Variations in ceftazidime and amoxicillin -clavulanate susceptibilities within a clonal infection of Burkholderia pseudomallei[J].Journal of Clinical Microbiology,2009,47(5):1556-1558.
[35] Sarovich D S,Price E P,Limmathurotsakul D,et al.
Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection[J].Infection and Drug Resistance,2012,5:129-132.
[36] Sarovich D S,Price E P,Von Schulze A T,et al.Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia[J/OL].Public Library of Science One,2012,7(2):e30789.
[37] Viberg L T,Sarovich D S,Kidd T J,et al.Within-Host Evolution of Burkholderia pseudomallei during Chronic Infection of Seven Australasian Cystic Fibrosis Patients[J/OL].Microbiology,2017,8(2):e00356.
[38] Bugrysheva J V,Sue D,Gee J E,et al.Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis[J/OL].Antimicrobial Agents and Chemotherapy,2017,61(6):e00010.
[39] Chirakul S,Norris M H,Pagdepanichkit S,et al.Transcriptional and post- transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance[J].Scientific Reports,2018,8(1):10652.
[40] Somprasong N,Hall C M,Webb J R,et al.Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A β-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria[J/OL].Microbiology,2020,11(2):e00592.
[41] Hwang J,Kim H S.Cell Wall Recycling-Linked Coregulation of AmpC and PenB β-Lactamases through ampD Mutations in Burkholderia cenocepacia[J].Antimicrobial Agents and Chemotherap,2015,59(12):7602-7610.
[42] Pope C F,Gillespie S H,Pratten J R,et al.Fluoroquinolone-resistant mutants of Burkholderia cepacia[J].Antimicrobial Agents and Chemotherap,2008,52(3):1201-1203.
(收稿日期:2021-02-04) (本文編辑:张爽)