APP下载

基于TRMM数据与SPI指数的广西地区旱涝演变分析

2021-03-19晏红波韦晚秋卢献健黄俞惠

自然资源遥感 2021年1期
关键词:旱涝洪涝降雨

晏红波,韦晚秋,卢献健,黄俞惠

(1.桂林理工大学测绘地理信息学院,桂林 541004; 2.广西空间信息与测绘重点实验室,桂林 541004)

0 引言

干旱是一种随时间推移悄然发生、日益加剧的自然灾害。我国因地理环境原因,干旱事件频繁发生。干旱的影响大、范围广、持续时间长、受灾后果重且恢复周期长[1],随着全球气侯变暖,近年来南方地区干旱现象显著突出[2]。广西位于我国南部,是典型的岩溶喀斯特地貌,土层浅薄持水能力差,土壤水分易流失从而导致干旱,且广西又是农业大省,主要种植的农作物为水稻、甘蔗、柑橘等,旱灾的发生会影响农作物的生长发育,对民生经济造成巨大影响,干旱问题长期困扰着该地区,因此对广西地区的干旱研究对该地区防灾减灾具有重要的现实意义[3-5]。

国内外使用热带降雨测量卫星(tropical rainfall measuring mission,TRMM)数据在降水分析、干旱分析和区域降水资料验证等方面做了诸多相关研究。国内如李景刚等[6]利用TRMM 3B43降水数据产品,验证了TRMM降水数据较地面气象站点观测具有较好的时空连续性,在全国性及区域性宏观气象干旱监测中具有较好的应用前景; 李燕等[7]基于TRMM数据对广西西江流域降水进行了时空分布特征研究,验证了TRMM 3B43降水数据与气象站点实测降水数据具有较好的一致性,可以代表研究区实际降水情况; 陈诚等[8]将0.25°空间分辨率的TRMM 3B43数据降尺度处理成0.05°空间分辨率数据,对黄淮海地区2010—2011年的干旱时空演化特征进行监测与分析,并计算同期的标准化降水指数对监测结果进行验证,证明降尺度TRMM数据具有较高可靠性; 熊俊楠等[9]对青藏高原地区的TRMM降水产品进行降尺度计算并与地面点实测数据对比,降尺度后的数据精度提高,并表现出较好的一致性和适用性。国外如Gupta等[10]利用TRMM/TMI数据确定土壤水分干湿条件,得出TRMM卫星数据存在干旱监测的潜力; Naumann等[11]指出 TRMM 数据进行干旱监测存在一定的不确定性,因TRMM卫星降水数据集相对其他格网降水数据集的空间分辨率高,干旱监测更为可靠。在进行干旱方面研究时,干旱指标标准化降水指数(standardized precipitation index,SPI)也被广泛使用。白永清等[12]基于多尺度SPI对中国南方大旱进行了监测; 黄晚华等[12]利用SPI分析了中国南方季节性干旱近58 a演变特征,研究和验证表明SPI指数能很好地体现季节性干旱的年际变化特征; 邵进等[13]使用地面台站1954—2010年的降水月值数据,利用SPI模型分析了江汉平原的干旱和洪涝的分布及其变化的规律,得到的结果与实际情况相差不大; 王俊霞等[14]构建了新的干旱指数监测模型并利用SPI对模型进行验证,对2014年河南省的干旱情况进行分析得到了较好的监测效果,这说明将SPI模型应用于旱涝分布及其变化规律的研究具有很好的实用性。

国内外对于TRMM数据的验证方面做了大量研究,且大多数研究都基于河流流域以及中高纬度地区进行开展,但针对地势复杂、山地覆盖较多的地区的研究相对较少[15],而广西以山地丘陵居多,导致降雨分布不均,局部地区常有内涝及干旱事件发生,因此本文选取广西区作为研究区域,基于地理信息系统(geographic information system,GIS)技术,以TRMM数据和地面台站数据为主要数据源,验证TRMM 数据在广西区内的适用性,并引入SPI 指数,以此研究广西地区的历年干旱情况演变,并对广西地区干旱变化趋势做出预测,为决策部门进行灾害预警及灾后救援提供理论参考。

1 研究区概况及数据源

1.1 研究区概况

广西壮族自治区(下文简称广西)地处我国华南地区,地理位置为N20°54′~ 26°24′,E104°26′~112°04′(图1)。广西处于云贵高原的东南,两广丘陵的西部,南朝北部湾。地貌总体是山地丘陵性盆地地貌,盆地大小相杂,丘陵错综,喀斯特地貌广布。地势为中部及南部多平地,四周多山地与高原,整个地势自西北向东南倾斜。广西降水量丰富,是中国降水量最丰富的省份之一。截至2017年底,广西地区有降雨量监测站3 403处,站网密度为56.7 km2/站,高于全国站网的平均密度。

图1 广西地理位置Fig.1 Geographical location of Guangxi

1.2 数据源及其数据处理

1.2.1 数据源

1)TRMM数据。TRMM 相关产品共有5个层次、3个等级,本研究使用的是1998年1月—2019年11月的 TRMM 3B43数据,为逐月降水数据,单位为mm/h,空间分辨率为0.25°×0.25°,范围为N50°~S50°。TRMM 3B43数据使用了所有可综合的卫星资料,具有精度较高、可探测空间广、时空分辨率较高等特点。本次使用的 TRMM 3B43 数据下载于美国航空航天局降水测量任务(National Aeronautics and Space Administration Precipitation Measurement Missions, NASA PMM)官网,下载地址为: https: //pmm.nasa.gov/。

2)地面台站数据。本研究共选取了位于广西的19个地面站点,使用其时间为1998年1月—2017年12月共20 a的降水量月值数据。数据单位为0.1 mm。下载于国家气象科学数据共享服务平台,下载地址为: http: //data.cma.cn/。

3)矢量数据。本研究使用的矢量数据主要包括中国国家行政线数据,类型为shape文件。数据来源于中国科学院资源环境科学数据中心,下载地址为: http: //www.resdc.cn/Default.aspx/。

1.2.2 数据处理过程

本文通过检验TRMM数据在广西区的适用性,计算出该数据在不同时间尺度下的SPI值,结合线性趋势回归分析,反演得到广西干旱时空分布特征,从而对广西干旱时空格局变化进行分析。数据处理流程如图2所示。

图2 数据处理流程Fig.2 Flow chart of data processing

文中主要用到TRMM降雨数据、地面台站数据和广西地区矢量底图3类数据。为同时使用多要素进行干旱研究,需将不同来源的要素数据进行叠加分析。为此,以ArcGIS平台为基础进行了如下处理:

1)TRMM数据、地面台站数据预处理。将TRMM 3B43数据进行转换、裁剪以及对应站点处理得到正确的数据图。

2)一致性检验。利用斯皮尔曼等级相关系数将1998—2017年的TRMM数据和地面台站数据进行一致性检验,验证其在广西地区的适用性。

3)统计季度、年平均降水量。通过栅格计算器计算出1998—2019年各季度、年降水总量和均值。

4)SPI(12)计算处理。使用SPI程序计算出1998—2019年SPI(12)的值,对1998—2019年SPI(12)使用张力样条插样法进行插值并分析。

5)降雨趋势预测。利用线性趋势分析法,对2020年广西地区降雨进行预测并分析其变化情况。

2 研究方法

2.1 斯皮尔曼等级相关系数

由于在使用TRMM 数据进行区域干旱研究时,首先要确保TRMM数据与地面实测数据相关,达到能使用的要求。因此选用斯皮尔曼等级(Spearman Rank)相关系数进行TRMM 数据与台站数据的一致性分析。

斯皮尔曼等级相关系数是一种非参数统计的方法。它的等级相关系数取值在[-1,1]之间,可以反映两组变量之间相关程度与方向,1或-1表示两个变量完全正相关或负相关。计算公式为:

(1)

2.2 SPI指数

SPI指数的原理是使用概率分布函数将降水量归一化,使得SPI值实际上被视为中间值的标准离差。SPI的计算过程如下[16]。

(2)

式中:β,γ分别为尺度和形状参数。β和γ可用极大似然估计法求得,即

(3)

(4)

,

(5)

式中n为时间序列长度。所以对某一时间尺度的降水量p,x

(6)

若有m个降水量为0的样本,则概率值F为:

(7)

求出概率值后,代入标准化正态分布函数,即

(8)

求得近似解:

(9)

(10)

式中: c0=2.515 517; c1=0.802 853; c2=0.010 328; d1=1.432 788 ; d2=0.189 269; d3=0.001 308; 并且F>0.5时,F值取1.0-F,S=1; 当F<=0.5时,S=-1。这时求出的Z值就是SPI值。

SPI 指数是一个多时间尺度的干旱指数,不同的时间尺度的 SPI 指数可以监测不同类型的干旱,干旱发生于当SPI 值小于等于-1.0 时,结束于SPI值为正值时。较长时间尺度(9~12个月)的SPI对降水的敏感性不大,适用于研究长时间的降水造成的江河径流、水库水位、湖泊水位、地下水位下降而出现水文干旱,12个月的SPI对长时间尺度的干旱描述较好[16-17],所以使用SPI(12)进行研究可以反映出旱涝灾害的持续性,对长期的或是较严重的旱涝情况有一个宏观的展示。SPI 指数值所表示的干旱或洪涝的强度如表1[18]所示。

表1 SPI值对应旱涝等级Tab.1 Drought and flood gradescorresponding to SPI values

2.3 线性变化趋势分析法

在进行长时间序列的栅格数据分析时,需要知道每个格点的长期趋势。线性趋势分析法通过逐像元的迭代,可以得到每个格点的趋势及显著性栅格图像,分析得到的栅格图像即可预测其未来变化的发展趋势。采用线性趋势线即最小二乘拟合直线来模拟降雨的年际变化,其斜率计算公式为:

(11)

式中:θSlope为斜率;TRMMi为第i年的年均TRMM值; 自变量i为 1~22 的年序号;n为研究的时间序列长度。θSlope>0说明降雨在22 a间的变化趋势是增加的,反之则是减少,θSlope=0表示无变化。

3 结果分析

3.1 斯皮尔曼相关系数一致性检验

根据式(1),利用斯皮尔曼等级相关系数方法计算,得到相关性分析结果(表2)。由表2可知TRMM数据和地面台站数据之间的显著性水平都小于0.001,显著性极高,表明这2种数据的相关性很强,综上所述,TRMM数据与台站数据有较好的一致性,说明这种数据适用于研究区降水监测。

表2 TRMM数据与地面台站数据相关性分析Tab.2 Correlation analysis ofTRMM data and station data

3.2 TRMM数据计算的SPI指数分析

由TRMM数据根据式(2)—(10)计算得到广西地区1998—2019年SPI(12)旱涝空间等级分布图,由于TRMM数据分辨率为0.25°×0.25°,在对数据进行裁剪后,右上角的部分小于一个像元所覆盖的范围,因而对下载的数据进行裁剪后就产生了一定的缺失。如图3所示。

由图3 SPI(12)可以看出广西地区自1998年以来旱涝灾害时常交替发生,几乎每年都有大大小小的旱涝事件,不同旱涝类型的空间分布差异较为明显。其中,可看出广西区平均每6 a就会发生重度洪涝的现象,在2001年、2008年、2015年、2017年有范围较大的洪涝事件发生,据广西气象局[19]资料显示,广西在2001年、2008年确实发生了特大洪涝灾害。据广西水利厅[20]水资源公报记录,2008年广西年平均降水量为1 798.7 mm,比多年均值偏多17.1%,自4月开始先后发生了10次严重的洪涝灾害,同时受到强台风的影响,沿海地区受灾也十分严重,这与图3(k)反映出来的情况一致。

全区大范围的干旱约每2~3 a一遇,据广西气象网[21]统计,广西特大干旱灾害有: 2003—2004年夏秋冬春连旱、2004—2005年秋冬春连旱、2009年春夏秋连旱。这与由SPI(12)计算分析得到的图3(f)、(g)、(l)反映出的在2003年、2004年、2009年有范围较大的干旱事件发生情况一致。其中2009年桂西北地区旱情较为严重,据广西水利厅[20]记录,当年广西最大流域西江梧州水文站出现实测水位2.06 m,为设站有记录以来的最低水位,且桂西北一带又属于典型的喀斯特峰丛地貌的集中分布区,植被覆盖率较其他地区低,地表土壤稀薄,储水能力较差,加上该区域当年降水较少,因此旱情相较于其他年份严重,这与图3(l)反映的情况吻合。

对于2011年、2018年与2019年广西只是季节性发生干旱,2015年与2017年全年广西未出现严重洪涝灾害,只是部分区域出现中小山洪或内涝等灾害[20-21]的现象,图3由SPI(12)计算反演得到的结果存在略微高估于实际的现象,是因为SPI(12)的计算反演的是持续的、长时间的降水造成的江河径流、水库水位、湖泊水位、地下水位下降而出现水文干旱情况,是对年内的整个降雨量情况进行了反映,且广西地区年内主要的旱涝大多发生在汛期(4—9月),汛期期间不同降雨量的多少对于全年的影响是最大的,又因为广西地区复杂的地形地貌和独特的气候环境导致区域内降水变化速率较快,季节分配不均,降水差异较大,因此在某些年份表现出高估于实际的情况也是正常的,与实际情况也是一致的。可见应用TRMM数据并结合SPI指数来分析旱涝情况效果较好,相对于地面台站只能对小范围地区的降水进行观测,二者的结合可以更快速地对长时间序列、范围较大的区域进行降水干旱监测,具有更好的时效性、连续性和空间覆盖性,在长时间序列的降水干旱监测及预警中有一定的优势性。

根据图3,对1998—2019年的旱涝频率情况进行了统计,如图4所示。从图4看出广西地区整体干旱频率比洪涝频率大,发生的次数更多,轻度干旱和轻度洪涝发生的频率较高,都超过0.5,重旱和重涝发生频率较低,都小于0.3,总体上,广西地区年尺度的洪涝发生率低于干旱频率,但仍以轻度洪涝和轻度干旱为主。

图4 1998—2019年旱涝发生频率统计Fig.4 Frequency statistics of droughtand flood in 1998—2019

3.3 TRMM降雨时空特征分析

3.3.1 季节特征分析

对广西1998―2019年TRMM累月降雨数据进行统计,将3—5月划分为春季,6—8月为夏季,9—11月为秋季,12月—次年2月为冬季,分别统计1998―2019年广西四季平均降水量分布(图5)。

从图5看出,广西降水量季节分配不均,干湿季分明。图5(a)显示春季桂东北地区降雨量大于桂西北地区,雨水量自东向西呈逐步递减的趋势,这是由于处于偏西位置的强烈的副热带高压阻挡了水汽向西输送,导致桂西北区域的降雨量减少。图5(b)可明显看出广西地区夏季降水较多,降雨量普遍超过700 mm,夏季广西受热带气流影响,近地面空气不断受热上升,冷空气下沉,形成对流,且气流在移动过程中遇到山脉阻挡,会引起气流抬升,加强对流,造成降雨,因此在夏季广西地区降水量明显增多。每到夏季降雨增多之时,处于东北部的桂林地区总会容易发生大大小小的洪涝灾害,严重影响居民的生活。图5 (c)和(d)可看出秋、冬季受大陆副热带高压增强及气温影响,广西地区降雨量明显减少。

3.3.2 年时空特征分析

图6为广西地区1998—2019年年均降水量空间分布。总体来看,广西地区年均降水量都处于1 000 mm以上,雨水量相对充沛,虽然降雨十分丰富,但相较之下仍呈现“东多西少”的格局。东部降雨主要集中在东北部的桂林地区并向四周辐射,桂林地区年降水量均超过1 600 mm,而处于桂西北地区的河池、百色市,桂中地区的南宁市,桂西南地区的崇左市年降水量相对桂东北地区少了许多,年降雨量均低于1 300 mm,主要由于广西地区汛期集中在3—8月,随着雨带南移,桂东北地区的桂林地区最先进入雨季,因而降雨量比其他地区多。

图6 由TRMM数据反演的广西1998—2019年平均降水量分布图Fig.6 Annual average precipitation distribution in Guangxifrom 1998 to 2019 retrieved from TRMM data

3.4 干旱演变趋势分析

利用式(1)对广西地区2020年的降水情况进行预测,根据降雨变化并结合广西区自身实际状况,按照专家打分法,把降雨变化导致的旱涝趋势分为重度洪涝、轻度洪涝、正常、轻度干旱、重度干旱5种类型(表3)。由表3可知,重度干旱面积占全区面积的0.3%,主要分布在广西中部,即南宁地区; 全区约5%的地区会受到轻度干旱的影响,旱区主要分布在南宁市中部地区、防城港市和钦州市北部地区,以及柳州市东北部与来宾市的交界处; 无旱涝发生的地区面积占比为64.5%,超过全区一半的面积; 30%的地区会发生轻度洪涝,主要分布在桂林,贺州、梧州、玉林、北海等市; 相比于轻微洪涝区域,发生重度洪涝的地区面积明显减少了许多,只占全区面积的0.2%,仅玉林市东部地区出现重度洪涝。

表3 回归分析法广西降雨旱涝变化趋势Tab.3 Change trend of rainfall drought and floodin Guangxi by regression analysis

图7为广西喀斯特地区分布图,由图7可看出广西喀斯特区域主要分布在桂西北和桂东北地区的河池、百色、柳州和桂林等地,喀斯特地区由于地表土壤稀薄,储水能力较差,极易发生旱涝灾害,对民生经济影响极大。而结合图7和图8看来,2020年广西喀斯特地区整体呈现正常趋势,仅存在局部轻度干旱和洪涝现象,预测2020年该地区发生严重旱涝灾害的可能性相对较小,民生经济不会受到很大的影响。由图8的预测结果来看,可以推测桂林市、贺州市、梧州市、玉林市、北海市有较大可能在2020年夏季汛期期间(即3—8月)会有轻度洪涝情况发生,南宁市、防城港市有可能在2020年会有轻度干旱情况发生。其余地区降水基本都处于正常范围内,可知除了上述洪涝情况外,2020年广西地区虽然降水量存在短期的波动,但广西区没有长时的旱涝事件发生。而此次预测也得到了部分验证,据广西气象网(http: //gx.weather.con.cn/)数据统计,广西自2020年5月底开始出现持续强降雨天气,并在6月初达到顶峰,导致广西桂林、梧州、贺州、柳州、河池等地出现了轻度甚至重度的洪涝灾害,与预测的结果相符,也证明了本文预测结果的准确性和价值性,对广西地区的防灾减灾工作具有一定的指导意义。

图7 广西喀斯特区域分布Fig.7 Regional distribution map of karst in Guangxi

图8 2020年广西旱涝趋势预测Fig.8 Forecast of drought and flood in Guangxi in 2020

4 结论

将广西TRMM数据引入SPI 指数,分析了20 a广西地区的旱涝演变情况,得到以下结论:

1)TRMM数据均通过了显著性检验,显著性极高,相关系数均大于0.8,具有高度相关性,说明TRMM数据与地面台站数据有较好的一致性,适用于广西区的降水监测。

2)根据TRMM数据计算的SPI(12)对应的色彩分级图,可以看出广西地区涝旱灾害频繁,洪涝灾害和干旱灾害常常交替发生。广西区在2001—2002 年、2008年、2015年、2017年有范围较大的严重的洪涝事件发生; 2003年、2009 年、2011年有范围较大的严重的水文干旱事件发生。

3)广西地区夏季降雨量最多,冬季最少,降雨量呈现“东多西少”的格局,降雨主要集中在桂东北地区,以桂林市为中心,降雨量呈递减趋势。

4)根据预测,广西桂林市、贺州市、梧州市、玉林市、北海市有较大可能在2020年夏季(即6—8月)会有轻度洪涝情况发生,南宁市、防城港市有可能在2020年会有轻度干旱的情况发生。

5)应用TRMM 3B43结合SPI对广西地区的进行了长时间序列的旱涝演变分析,评估得到广西地区的旱涝总体趋势与实际情况相符,对广西地区的旱涝预警以及防灾减灾工作具有一定的指导意义。

猜你喜欢

旱涝洪涝降雨
洪涝造成孟加拉损失25.4万吨大米
衡阳暴雨洪涝特征及对后期农业干旱影响
四川省1960-2017年旱涝时空变化特征分析
沧州市2016年“7.19~7.22”与“8.24~8.25”降雨对比研究
黔东南州洪涝发生规律研究
红黏土降雨入渗的定量分析
气候变化背景下西北干旱区旱涝的变化规律
基于FloodArea 模型的龙须河流域暴雨洪涝淹没模拟研究
南方降雨不断主因厄尔尼诺
北方农牧交错带气候变化与旱涝响应特征