APP下载

增材制造用球形钛合金粉等离子制备技术及发展前景分析

2021-03-17供稿王彦军张鑫张思源贾坤乐胡晓蕾WANGYanjunZHANGXinZHANGSiyuanJIAKunleHUXiaolei

金属世界 2021年1期
关键词:粉体增材等离子

供稿|王彦军,张鑫,张思源,贾坤乐,胡晓蕾 / WANG Yan-jun, ZHANG Xin,ZHANG Si-yuan, JIA Kun-le, HU Xiao-lei

内容导读

近年来金属材料作为3D打印耗材发展迅速,特别是钛合金、钴铬合金、不锈钢和铝合金等金属粉末材料大量应用于3D打印技术领域。球形钛合金粉是增材制造(3D打印)耗材最普遍的一种金属材料,文章系统介绍了球形钛合金粉等离子制备方法,包括等离子旋转电极法、等离子火炬雾化法及感应等离子球化法,对各种方法的技术现状进行了分析,并对未来增材制造用球形钛合金粉发展前景进行了展望。

增材制造技术(又称“3D打印” )被誉为“21世纪最具潜力的技术”,在“中国制造2025战略”中明确提出将增材制造作为未来智能制造的重点技术加以扶持[1]。而要使增材制造技术获得广泛应用,所用耗材是决定其发展的关键物质基础[2]。目前,增材制造耗材主要包括:塑料、树脂、橡胶、陶瓷和金属等材料[3],其中金属材料作为增材制造技术的耗材近年来发展速度很快,特别是钛合金、钴铬合金、不锈钢和铝合金等金属粉末材料大量应用于增材制造技术领域[2]。钛合金具有低密度、高强度、良好的耐腐蚀性能及高熔点等特点[4],是增材制造技术最常用金属原料之一,在航空、航天、汽车、生物等领域作为结构件广泛应用。通常,增材制造技术主要工艺包括:激光熔化堆积快速成型(LENS)和选区激光熔化直接成型(SLM)两种,SLM技术适用于精密复杂小型零件制造,应用广泛,其所使用的钛合金粉的粒径为20~50 μm,且要求粉末具有高球形度[2]、纯度及流动性。等离子是由中性粒子、阳离子和电子等组成的整体呈电中性的物质集合体[5],常被作为加热介质广泛应用于球形钛合金粉的制备领域,目前已形成的主要方法包括:等离子旋转电极法、等离子火炬雾化法和感应等离子球化法。本文主要对目前等离子制备适合增材制造用球形钛粉技术进行分析,并对其发展前景进行了展望。

等离子制备球形钛粉技术

等离子旋转电极法

等离子旋转电极法(Plasma Rotating Electrode Process,PREP)是制备球形钛合金粉常用方法之一,其原理主要是以钛合金棒材作为自耗电极,制粉时让电极保持高速旋转状态,等离子作为热源逐步熔化电极,所产生的液体通过离心力作用甩出后形成细小液滴,在表面张力作用及惰性气体保护的环境中冷却固化为球形颗粒[6]。PREP制粉原理示意图,如图1所示。

图 1 等离子旋转电极法制粉示意图[7]

传统的旋转电极法(REP)采用钨电极,在金属雾化时,钨电极也会被腐蚀,作为杂质成分进入粉体中,采用等离子旋转电极法避免了钨电极产生杂质问题,保证了所制备粉末的纯度[8]。1998年北京钢铁研究院和航天材料及工艺研究所从俄罗斯引进PREP设备,并进行了一系列球形钛粉制备的研究工作[9]。王琪等[10]利用等离子旋转电极法制备出了TC15钛合金球形粉末。所制备的粉末化学成分与原来棒材成分近似,颗粒呈规则的球形,表面光亮圆滑,其粒径范围为106~246 μm,细粉(<106 μm)所占比例较低。西安宝德粉末冶金公司在国内首先开展PREP制备钛及其他合金粉,其研制的PREP设备制备的金属粉体粒径47~381 μm[8]。采用PREP制备的钛合金粉球形度好、致密度高且氧含量低,但由于电极转速的限制,制备的粉末适合于选区激光熔化成型工艺(SLM)要求的细粉(20~50 μm)产出率较低[11]。

等离子火炬雾化技术

等离子火炬雾化技术(Plasma Atomization,PA)是将金属及其合金以棒坯、丝材、颗粒或者液态蒸汽形式,通过特制的进料设备以恒定的送料速度送入炉内,并利用在炉体上布置的等离子火炬产生的聚焦等离子射流将物料熔融雾化,然后经过冷却得到球形粉体[12]。通常采用等离子火炬雾化技术制备钛及钛合金粉主要原料为钛或其合金丝,体系在整个过程中均处于惰性气氛保护下,可减少粉末氧化,获得高纯粉体[6]。根据专利[13]绘制该工艺示意图,如图2所示。该技术采用等离子作为雾化热源,可使目标物料熔融更充分,结合冷却速度的合理控制,可得到球形度高、氧含量低及粒度细的粉末。但由于该技术以高功率等离子枪为热源,能源消耗大,会增加球形钛及钛合金粉的制备成本[14]。此外,等离子火炬雾化法所得球形粉体粒度分布较宽,使用前必须进行粒度分级,且微细粉体产率较低,产品成本高,限制了大面积推广应用[15]。采用PA法与PREP法制备的粉末性能基本一致,具有颗粒球形度好、粒度分布均匀、氧含量低、纯度高、流动性好等特点,细粉收得率比PREP高2倍以上[12]。

图 2 等离子火炬雾化法制粉示意图

等离子球化法

等离子球化法(Plasma Spheroidization)是由位于灯具管外的感应线圈产生温度达104~105K的高频感应热等离子体[16],利用高温的等离子体熔化不规则的粉末,粉体表面在高温下迅速受热熔化,熔融的颗粒在表面张力作用下形成球形度很高的液滴,并通过快速冷凝固化得到球形颗粒[17],图3为等离子球化制粉示意图。

目前加拿大TEKNA公司开发的射频等离子体粉体处理系统处于世界领先地位,该公司已经利用射频等离子技术实现了Ti、W、Mo、Ta、Ni、Cu等金属粉末的球化处理[9]。Hedger等[18]也利用射频等离子体球化技术对Ti粉进行了球化处理,处理后粉末的球化率达到85%。古忠涛等[19-20]采用射频等离子体球化颗粒形状不规则的钛粉,通过SEM观察其外观形貌,粉体颗粒球形度高、表面光滑、流动性好及松装密度高,且采用该方法可去除颗粒中的裂缝及空隙。但目前该方法仍存在氧含量偏高的问题,降低粉体中的氧含量是等离子球化技术获得推广应用的关键。矿冶科技集团有限公司引进了TEKNA公司的感应等离子设备,并开展了球形钛合金粉球化制备工艺研究,所制备的球形钛合金粉微观形貌如图4所示,颗粒球形度高、表面光洁、粒径为20~50 μm,流动性为38 s/50 g,可满足增材制造SLM工艺的需求。

图 3 等离子球化制粉示意图

图 4 钛合金粉原料及球化后的钛合金粉SEM图

未来发展前景分析

(1)近年来,增材制造被认为是智能制造领域最前沿和最具潜力的技术发展方向之一,而作为打印耗材的金属材料必然与增材制造发展同步进行,根据咨询公司SmarTech预测,到2024年全球用于金属粉末增材制造的市场规模将达到110亿美金。而钛合金因具有优异的强度和韧性、耐腐蚀、低密度和生物相容性等特点,将在航空、航天、汽车、生物医学等领域获得广泛应用,市场需求前景非常广阔。

(2)等离子技术的应用和发展为钛合金粉的制备提供技术支持,等离子旋转电极工艺受电极转速等因素的限制,得到的粉体粒度较粗,适合SLM工艺用钛合金粉成品率低;等离子火炬雾化工艺是获取球形钛及钛合金粉的主要方式,但该方法生产小于50 μm细粉产率仍然偏低,且由于专利保护及技术封锁等原因导致其价格昂贵,短期内难以大范围推广应用。感应等离子球化技术具有原料来源广、生产工艺简单、粉末粒度可控、球形率高等特点,而针对该方法氧化程度高的问题,可通过控制设备的密封性和加强惰性气体保护的控制,减少粉体的氧化。但目前国内感应等离子球化设备多采用国外进口,其核心技术尚不能完全掌握,因此,开发国产等离子球化设备也是推动球形钛合金粉及其他金属粉末在国内增材制造领域获得广泛应用的关键。

猜你喜欢

粉体增材等离子
两种物理加工方式对西洋参加工副产物粉体性质的影响
基于损伤力学的增材制造金属材料疲劳寿命预测
神秘的 “物质第四态”
金属粉末增材在飞行器发动机的应用及挑战
食品粉体螺旋输送荷电特性数值模拟
再生粉体对混凝土抗碳化性能的影响
利用区块链技术为增材制造增加“信任”
粉碎粒度对笋衣营养成分及特性的影响
我国增材制造技术的应用方向及未来发展趋势
等离子面板出货下滑