基于能谱CT纹理分析在预测胃癌术前淋巴结转移中的价值
2021-02-24王小雷高玉青张书海李淑华赵灿灿段绍峰谢宗玉
王小雷,高玉青,徐 鹤,2,张书海,2,李淑华,赵灿灿,段绍峰,谢宗玉
目前,胃癌是最常见的恶性肿瘤之一,也是全球第二大癌症相关死亡原因[1],大约70%的病例发生在亚洲,仅中国就占了一半以上[2]。淋巴结转移是胃癌预后因素之一,在选择合适的新辅助化疗可行方案中起着关键的作用[3-4]。传统影像学检查确定淋巴结转移的方式主要是基于淋巴结的大小。然而,反应性或炎症性淋巴结可以增大、正常或者轻微增大,因此部分病人存在临床淋巴结分期不准确的风险[6]。计算机断层成像是术前评估淋巴结状态最常用的成像手段,但是据目前报道来看准确率尚不能令人满意,仅60%。能谱CT在降低扫描剂量的同时,能获得高质量的影像图像,而纹理分析通过高通量特征提取,分析并挖掘图像中的定量特征,从而客观评估病灶的均质性[7]。本研究旨在探讨以能谱CT为基础的纹理分析在胃癌术前淋巴结转移中的评估价值。
1 材料与方法
1.1 一般资料 选择 2019年1月至2020年1月我院80例经病理确诊的胃癌病人,男64例,女16例;年龄39~86岁。纳入标准:(1)术前经过病理证实的胃癌病人;(2)病理证实有明确的淋巴结分期的病人;(3)术前未进行放疗或化疗治疗;(4)术前2周内进行上腹部增强检查且进行能谱序列扫描。排除标准:(1)术前进行放疗或化疗治疗;(2)病人临床信息欠缺或缺乏明确淋巴结状态;(3)影像图像上病灶显示不清或者病灶太小。根据术后病理确认训练组57例,验证组23例。
1.2 仪器及方法 所有病人均使用GE 256排Revolution CT进行能谱序列扫描。对膈顶部到双肾下极水平此范围实施扫描,所设定的扫描模式是“GSI模式行平扫”联合“增强扫描”,由肘静脉注射碘普罗胺,流率3.5 mL/s,剂量1.0 mL/kg。注射对比剂后对腹主动脉CT值进行智能追踪,当此参数值达到120 Hu条件下开始进行动脉期扫描,然后30 s后接着进行静脉期扫描;行本次扫描时,参数设定情况为:GSI模式,采用ACTM自动管电流调制技术,NI=8.0~15.0,管电压为140/80 kVp,螺距0.992∶1,旋转时间0.5 s。图像重建为层厚,间距0.625 mm,标准算法,传至GEAW4.7工作站。
1.3 肿瘤分割及特征提取 使用专用软件AK进行肿瘤分割,一位年轻放射科医生在一位具有5年以上及一位15年以上腹部影像学诊断经验的放射科医生A和B共同指导下对所有病人的病变进行分割。在进行分割时,该放射科医生已被告知肿瘤的确切位置,从能谱CT 单能量70 keV图像静脉期病灶最大层面横断面图像上进行手动勾画感兴趣区(region of interest,ROI)。在勾画ROI时,分割范围尽可能覆盖病灶,在肿瘤的边界内进行勾画,同时保持距肿瘤边缘2~3 mm的距离以避开周围的空气或脂肪组织,手动分割示意图见图1b。
采用AK软件(GE Healthcare,China)对预处理后的图像进行纹理特征提取。最终得到直方图特征、纹理特征(355个,基于GLCM、RLM、GLSZM)和集合特征三种类型,共计402个纹理特征。为了构建模型,进行了观察者之间的一致性检验,以获得可重现的特征。
1.4 统计学方法 在建立影像组学模型之前,首先使用Mann-WhitneyU检验,正态分布采用t检验,然后经logistic分析,再使用MRMR算法进一步挑选10个相关特征和非冗余特征,而后经过逐步多变量logistic回归,构建最终的纹理分析预测模型,最后为了验证纹理分析结果的可靠性,进行了100次留组交叉验证(100-fold leave-group-out cross-validation,LGOCV),并计算Rad-Score。
2 结果
进行能谱扫描的80位胃癌术前病人,其中发生淋巴结转移的病人有49例(其中男40例,女9例),年龄39~80岁,而未发生淋巴结转移的病人有31例(其中男24例,女7例),年龄46~86岁。在所选影像组学特征中,398个经Mann-Whitney U检验评估具有统计学意义(P<0.05)。经单因素logistic分析筛选出10个特征具有统计学意义(P<0.05),然后经过MRMR方法选择要素子集,保留了10个相关纹理特征,这10个纹理特征的性能见表1,在经过多元logistics分析及似然比检验选择后,最终保留了4个纹理特征,其纹理特征性能见表2,并构建了预测模型,最终模型显示出了良好的预测性能,AUC值约为0.79(0.69~0.89)。将选取的4个纹理特征构建预测模型,用组学评分计算公式表示:Rad-score=0.577 107 400 004 795×(Intercept)-2.053 355 886 945 71×Correlation_angle45_offset1-0.695 288 789 630 599×Correlation_angle0_offset4+1.209 241 722 435 82×Inertia_AllDirection_offset1_SD-1.208 985 369 906 08×Inertia_angle90_offset1。
表1 降维后筛选的10个纹理特征的性能
表2 经过多元logistics分析及似然比检验选择后最终保留4个纹理特征的置信区间(CI)及P值
经过多重交叉验证得出准确性、灵敏度及特异性,训练组准确性、灵敏度及特异性分别为0.79、0.82及0.77;实验组准确性、灵敏度及特异性分别为0.69、0.69及0.68。
3 讨论
目前对于临床而言,有效的评估胃癌术前淋巴结转移情况对于临床手术前规划以及术后辅助治疗至关重要。目前,临床医生对相关淋巴结的分析主要依赖于CT或MRI,然而这些技术的结果并不能很好地满足临床的需要,特别是在评估肿瘤的浸润深度及淋巴结转移程度[8]。
能谱CT对人体解剖结构及病灶特征显示得更加清晰,在提高组织对比度的同时增加病灶的检出率。能谱CT在疾病的鉴别诊断、病理分级、淋巴结转移及肿瘤复发等[9-12]方面具有一定的优势。影像组学是一种新兴的领域,它通过一种非侵入性的方法从医学影像图像中提取定量特征[13-14]。它在未来肿瘤学实践中显示出巨大的潜力,包括鉴别诊断、组织学分类预测、淋巴结转移、治疗效果及预后等方面[15-16]。影像组学在鉴别肺结节良恶性、肝细胞癌的微血管浸润及晚期结肠癌的术前评估[17-19]等方面具有很好的辅助效果。WANG等[20]回顾性研究247例经手术证实的胃癌病人,在术前动脉期图像上绘制感兴趣区并提取影像学特征,通过随机森林算法,构建了一个影像组学模型用于预测胃癌淋巴结转移。结果显示,该模型具有良好的区分能力,训练集曲线下面积(AUC)为0.844,试验集的AUC为0.837,准确度达到80%~84%,而常规CT检查的淋巴结转移准确度为61%~64%,MA等[21]研究纳入282例胃癌病人,探讨CT征象对胃癌淋巴血管侵犯的预测价值,结果显示静脉期CT值具有较好的预测价值。LI等[22]回顾性收集了204例胃腺癌病人,分别在动脉期和静脉期图像中提取影像组学特征用于预测淋巴结转移的效能,结果发现静脉期AUC值为0.76,高于动脉期AUC值0.71。本研究采用能谱扫描模式,在静脉期图像上进行病灶分割及特征提取,最终纹理分析结果AUC为0.79,较LI等结果有所提高,分析其原因可能是能谱CT在时间、空间方面的分辨率均得到显著的提高,避免常规CT扫描过程中的硬化伪影及容积效应[23],有利于纹理特征的提取及分析。
在静脉期模型构建中,本研究最终筛选出4个相关性较高的纹理特征,其中全方位惯性偏离量1-SD与胃癌发生淋巴结转移呈正相关关系,45°相关偏离量1、0°相关偏离量4及90°惯性偏离量1呈负相关关系,参考这4个纹理特征值的高低,有助于预测胃癌是否发生淋巴结转移。
本研究局限性在于:(1)仅在单张CT图像选择病灶最大层面进行纹理分析,未来可以构建病灶的三维模型分析病灶的纹理特征;(2)病灶ROI是通过手动勾画,处理过程中可能存在一定的误差;(3)仅使用了CT静脉期图像,CT动静脉双期对比分析是否获得更高的预测准确性;(4)样本量相对较小,后续研究中可以继续收集更多的能谱数据进行相关验证。
综上所述,基于能谱CT的纹理分析在未来有望成为胃癌病人术前淋巴结转移预测的非侵入性工具,有助于临床确定手术方式及术后辅助治疗方式。