固态发酵亚麻籽饼工艺优化及其对1~21日龄肉鸡生长性能、免疫及抗氧化功能的影响
2021-02-07郭宝珠蔡辉益刘国华常文环郑爱娟陈志敏
郭宝珠 蔡辉益 刘国华 李 阳 常文环 郑爱娟 陈志敏
(中国农业科学院饲料研究所,农业农村部生物饲料重点实验室,生物饲料开发国家工程研究中心,北京100081)
蛋白质饲料原料缺乏已成为我国畜牧业健康持续发展的主要障碍之一[1],而开发非常规蛋白质饲料原料(unconventional protein feed ingredients,UPFI)能促进地源性饲料资源有效利用并一定程度上缓解蛋白质饲料原料缺乏的现状[2-3]。中国是亚麻的主要种植国之一,在我国西北、华北等地区亚麻种植较多[4],亚麻籽饼粕是亚麻籽榨油后的副产物,其粗蛋白质含量为32.2%~34.8%[5],属于典型的地源性UPFI[6]。然而,FSC中的主要抗营养因子——生氰糖苷(cyanogenic glycosides,CGs),极大地限制了其在动物饲粮中的应用[7-8]。研究表明,发酵处理可以脱除UPFI(如棉籽饼粕、菜籽饼粕、亚麻籽饼粕等)中抗营养因子并改善营养组成[9]。已有的关于发酵亚麻籽饼粕的研究[10-12]多关注CGs的脱除效果,对发酵后亚麻籽饼粕营养组成变化的研究较少,而且发酵菌株多为酵母、曲霉等真菌类,鲜有枯草芽孢杆菌等细菌类发酵菌株。目前尚未有发酵亚麻籽饼粕对肉鸡生长性能、免疫及抗氧化功能影响的研究报道。因此,本试验以亚麻籽饼(flaxseed cake,FSC)为唯一发酵底物,以枯草芽孢杆菌为发酵菌株,优化固态发酵亚麻籽饼(solid-state-fermentation flaxseed cake,SFFSC)的制备工艺,并探究SFFSC对1~21日龄肉鸡生长性能、免疫及抗氧化功能的影响,以期为UPFI的开发应用提供有效参考。
1 材料与方法
1.1 试验材料
发酵菌种:枯草芽孢杆菌由中国农业科学院饲料研究所单胃动物饲料创新团队提供,该菌在中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)的登记号为18230。
培养基:细菌基础培养基(LB培养基)由北京陆桥技术股份有限公司提供。
发酵底物:FSC由呼和浩特市某生物科技有限公司提供。
好氧发酵袋:由中国农业科学院饲料研究所单胃动物饲料创新团队发明制作。
试验动物:1日龄科宝肉公鸡由北京大发正大有限公司提供。
1.2 SFFSC制备工艺优化
1.2.1 单因素试验
采用控制变量法,分别探究发酵时间、发酵温度、料水比、接种量对枯草芽孢杆菌固态发酵处理FSC脱除CGs的影响。以CGs含量为评价指标,每个单因素设5个水平,每个水平设3个重复。具体方法如下:保持接种量10%、料水比1.0∶0.8、发酵温度37 ℃不变,设定发酵时间分别为24、36、48、60、72 h,探究发酵时间对发酵结果的影响;保持接种量10%、料水比1.0∶0.8、发酵时间72 h不变,设定发酵温度分别为31、33、35、37、39 ℃,探究发酵温度对发酵结果的影响;保持接种量为10%、发酵温度37 ℃、发酵时间72 h不变,设定料水比分别为1.0∶0.6、1.0∶0.7、1.0∶0.8、1.0∶0.9、1.0∶1.0,探究料水比对发酵结果的影响;保持发酵温度37 ℃、发酵时间72 h、料水比1∶0.8不变,设定接种量分别为2%、6%、10%、14%、18%,探究接种量对发酵结果的影响。
1.2.2 正交试验
在单因素试验的基础上,采用正交试验对枯草芽孢杆菌固态发酵FSC的工艺进行优化。以CGs含量为指标,采用L9(34)正交试验对发酵时间(A)、发酵温度(B)、料水比(C)、接种量(D)4个因素进行优化,每个因素设3个水平,进行3水平4因素正交试验,表1为L9(34)正交试验设计因素水平表。
表1 L9(34)正交试验设计因素水平表
1.2.3 验证试验和扩大试验
按照优化的发酵工艺进行验正试验,设置3个重复并测定发酵后FSC中CGs含量。按照优化的发酵工艺,将发酵底物扩大至30 kg进行扩大试验。发酵组:发酵时间72 h、发酵温度39 ℃、料水比1.0∶0.6、接种量4%;对照组:FSC不进行任何处理。每组3个重复,发酵后的样品常温自然风干。取扩大试验中各组样品测定CGs含量并计算CGs的脱毒率,同时测定粗蛋白质、多肽、粗脂肪和粗纤维含量。
CGs脱毒率(%)=100×(对照组CGs含量-
发酵组CGs含量)/对照组CGs含量。
1.3 SFFSC对肉鸡生长性能、免疫及抗氧化功能的影响
1.3.1 试验设计与试验饲粮
选取180只1日龄健康科宝肉公鸡,按初始体重无差异原则随机分成3个组,每组6个重复,每个重复10只鸡。试验周期为21 d。对照组饲喂玉米-豆粕型基础饲粮,试验组分别饲喂含10%FSC(FSC组)和10%SFFSC(SFFSC组)的试验饲粮。基础饲粮与试验饲粮均参考《鸡饲养标准》(NY/T 33—2004)配制,饲粮营养水平根据中国饲料数据库中数据计算而得,各饲粮组成及营养水平见表2。
1.3.2 饲养管理
饲养试验于中国农业科学院南口中试基地进行,开展前对鸡舍严格消毒。采用全封闭式鸡舍3层重叠式笼养,每笼10只鸡。第1~3天每天24 h光照,第3天后均为23 h光照。饲粮为颗粒状,自由采食;乳头式饮水器,自由饮水。水循环式暖气供热,前3 d鸡舍温度维持在33 ℃,此后每周降低2~3 ℃,直到24 ℃,并维持在24 ℃,相对湿度控制在50%左右。试验肉鸡饲养管理和鸡舍卫生管理均按常规饲养规程进行。每天进行健康观察,记录死亡只数、时间及原因,按时记录损料、余料以及各项生长性能指标。
1.4 测定指标与方法
1.4.1 FSC与SFFSC中营养成分及CGs含量的测定
参照GB/T 6435—2014,采用鼓风干燥箱测定干物质(dry matter,DM)含量。采用杜马斯全自动定氮仪测定粗蛋白质含量。采用滤袋法测定粗纤维含量。采用索氏抽提法测定粗脂肪含量。参照GB/T 22492—2008的测定方法测定多肽含量。
参考GB/T 13084—2006的比色法测定CGs含量,具体步骤如下:准确称取10 g(精确到0.001 g)样品于500 mL三角平底蒸馏烧瓶中,加入250 mL去离子水,封口,在室温放置4 h后,加入20 mL乙酸锌溶液和2.0 g酒石酸,迅速连接于HCA-300多功能蒸馏器,进行蒸馏。将冷凝管下端插入盛有20 mL 20 g/L氢氧化钠溶液的250 mL锥形瓶液面下,收集蒸馏液约150 mL时,取下锥形瓶,将锥形瓶收集的蒸馏液完全转移至250 mL容量瓶中,用去离子水定容。量取10 mL容量瓶溶液置于25 mL比色管中,作为试样溶液。试样溶液中加1 mL 10 g/L氢氧化钠溶液和1滴酚酞指示液,用乙酸溶液缓慢调至红色褪去,加5 mL磷酸盐缓溶液,37 ℃恒温水浴锅中保温10 min,加入0.25 mL氯胺T溶液,加塞振荡混合均匀,放置5 min。分别加入5 mL异烟酸-吡唑酮溶液,加去离子水至25 mL,混匀。37 ℃恒温水浴锅放置40 min,用2 cm比色杯,以零管调节零点,于波长638 nm处测定吸光度。
1.4.2 生长性能
分别于肉鸡1和21日龄时以重复为单位称重,记录总采食量、肉鸡末体重(final body weight,FBW),计算平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)。
1.4.3 血清免疫和抗氧化指标
在肉鸡21日龄时,每个重复挑选与该重复平均体重接近的肉鸡1只,采血10 mL,室温静置1 h后,3 000 r/min离心15 min后分离血清。采用日立7600全自动生化分析仪测定血清总蛋白(TP)、免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白M(IgM)含量。血清总超氧化物歧化酶(T-SOD)活性、丙二醛(MDA)含量和总抗氧化能力(T-AOC)均采用试剂盒测定,试剂盒购于南京建成生物工程研究所,按照说明书操作步骤进行测定。
1.5 数据统计与分析
采用SPSS 20.0软件对试验数据进行单因素方差分析(one-way ANOVA),对组间差异显著的指标,使用Duncan氏法进行多重比较。以P<0.05作为差异显著性判断标准。试验数据用平均值±标准误表示。
2 结果与分析
2.1 单因素试验结果
如图1所示,不同发酵时间下发酵FSC中CGs含量差异显著(P<0.05),在一定范围内随着发酵时间的增加,发酵FSC中CGs含量逐渐降低,而且下降幅度越来越小,正交试验中发酵时间可设置为48、60、72 h。如图2所示,不同发酵温度下发酵FSC中CGs含量差异显著(P<0.05),在一定范围内随着发酵温度的升高,发酵FSC中CGs含量逐渐降低,而且下降幅度越来越小,正交试验中发酵温度可设置为35、37、39 ℃。如图3所示,料水比为1.0∶0.6、1.0∶0.7、1.0∶0.8时发酵FSC中CGs含量相近且显著低于料水比为1.0∶0.9、1.0∶1.0时(P<0.05),在一定范围内随着料水比的降低,发酵FSC中CGs含量先保持不变后上升,正交试验中料水比可设置为1.0∶0.6、1.0∶0.7、1.0∶0.8。如图4所示,接种量6%时发酵FSC中CGs含量显著低于接种量为2%、10%、14%、18%时(P<0.05),在一定范围内随着接种量的增加,发酵FSC中CGs含量先下降后上升,正交试验中接种量可设置在6%左右。
2.2 正交试验结果
固态发酵FSC工艺优化正交试验结果直观分析见表3,由极差(R)值可知,按影响力大小,各发酵参数可排序为:发酵温度>发酵时间>接种量>料水比。发酵时间和发酵温度的影响力相近且对发酵结果的影响较大,料水比和接种量的影响力相近且对发酵结果的影响较小。由K值可知,A3B3C2D3的试验处理可使CGs含量降到最低水平,此时发酵时间为72 h、发酵温度为39 ℃、料水比为1.0∶0.7、接种量为8%。由表4可知,发酵时间水平3的CGs含量显著低于时间水平1和2(P<0.05);发酵温度水平3的CGs含量显著低于发酵温度水平1和2(P<0.05);料水比各水平间的CGs含量差异不显著(P>0.05);接种量各水平间的CGs含量差异不显著(P>0.05)。发酵温度和发酵时间对CGs含量的影响显著(P<0.05),因此需选取发酵温度和发酵时间最优水平作为最终的发酵参数,即温度为39 ℃、时间为72 h;料水比和接种量对发酵结果的影响不显著,为了节约生产成本,选取料水比1.0∶0.6、接种量4%作为最终的发酵参数。综上,枯草芽孢杆菌固态发酵FSC脱除CGs的最优工艺为:发酵时间72 h、发酵温度39 ℃、料水比1.0∶0.6、接种量4%。
数据柱标注相同小写字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。下图同。
图2 发酵温度对发酵FSC中CGs含量的影响
图3 料水比对发酵FSC中CGs含量的影响
图4 接种量对发酵FSC中CGs含量的影响
2.3 验证试验和扩大试验结果
验证试验测得CGs含量为(33.42±2.05) mg/kg,经方差分析,其与正交试验中处理A3B3C2D1的CGs含量[(38.78±0.20) mg/kg]差异不显著(P>0.05)。扩大试验结果见表5,发酵组CGs含量为(34.78±1.86) mg/kg,经方差分析,其与正交试验中处理A3B3C2D1的CGs含量[(38.78±0.20) mg/kg]差异不显著(P>0.05)。FSC经优化发酵工艺处理后,CGs含量由(548.47±8.76) mg/kg降至(34.78±1.86) mg/kg,CGs脱除率达到93.66%;同时,FSC营养组成得到改善,粗蛋白质、多肽、粗脂肪含量均显著提高(P<0.05),粗纤维含量变化不显著(P>0.05)。
2.4 SFFSC对肉鸡生长性能的影响
由表6可知,与对照组相比,SFFSC组1~21日龄肉鸡FBW、ADG、ADFI分别显著降低6.90%、7.26%、1.99%(P<0.05),F/G显著增加6.15%(P<0.05);FSC组1~21日龄肉鸡FBW、ADG、ADFI分别显著降低24.69%、21.77%、10.86%(P<0.05),F/G显著增加10.77%(P<0.05)。与FSC组相比,SFFSC组1~21日龄肉鸡FBW、ADG、ADFI分别显著提高23.62%、18.54%、9.95%(P<0.05),F/G显著降低4.17%(P<0.05)。
表3 正交试验结果直观分析
表4 正交试验结果方差分析
2.5 SFFSC对肉鸡血清免疫指标的影响
由表7可知,与对照组相比,SFFSC组1~21日龄肉鸡血清TP、IgA、IgG含量差异不显著(P>0.05),IgM含量显著提高5.26%(P<0.05);FSC组1~21日龄肉鸡血清IgG含量显著降低20.95%(P<0.05)。与FSC组相比,SFFSC组1~21日龄肉鸡血清IgG和IgM含量分别显著提高25.38%和6.67%(P<0.05)。
2.6 SFFSC对肉鸡血清抗氧化指标的影响
由表5可知,与对照组相比,SFFSC组1~21日龄肉鸡血清T-SOD活性、MDA含量、T-AOC差异不显著(P>0.05);FSC组1~21日龄肉鸡血清T-SOD活性显著降低3.72%(P<0.05),MDA含量显著增加16.29%(P<0.05)。与FSC组相比,SFFSC组1~21日龄肉鸡血清T-SOD活性显著提高4.67%(P<0.05),MDA含量显著降低15.97%(P<0.05)。
表5 扩大试验结果(干物质基础)
表7 SSFFC对1~21日龄肉鸡血清免疫指标的影响
表8 SSFFC对1~21日龄肉鸡血清抗氧化指标的影响
3 讨 论
3.1 固态发酵FSC脱除CGs的机理
亚麻籽含有的CGs主要为β-龙胆二糖丙酮氰醇(linustatin,LN)和β-龙胆二糖甲乙酮氰醇(neolinustatin,NN)[13],榨油过程中LN和NN几乎全部存留于FSC中且百分含量升高[14]。研究表明,LN和NN均可被β-葡萄糖苷酶水解为氰醇和葡萄糖,氰醇在中性和碱性环境中非常不稳定,能自发分解产生酮化合物和氰化氢(hydrogen cyanide,HCN),羟腈裂解酶可加速氰醇的分解[15-16]。FSC中存在β-葡萄糖苷酶,但是该酶与CGs存在于不同部位而不能接触[17],而且FSC中的β-葡萄糖苷酶活性低、稳定性差且易在榨油过程中失去活性[18]。微生物(如酵母菌、细菌、霉菌等)亦能产生β-葡萄糖苷酶[19-20]。发酵过程中,微生物分泌的各种酶可破坏FSC的组织结构,CGs与β-葡萄糖苷酶充分接触而被水解,产生的HCN易挥发,从而达到FSC脱毒。CGs的脱除率与β-葡萄糖苷酶活性相关,不同微生物分泌的β-葡萄糖苷酶活性不同,其水解糖苷类物质的能力也不同[21]。研究表明,酿酒酵母固态发酵处理FSC可脱除79.91%的CGs[10],假丝酵母和黑曲霉混菌发酵FSC可脱除73.22% CGs[11],菌株多枝横梗霉(Lichtheimiaramosa)发酵FSC可脱除89.00%的CGs[12]。本研究发现,FSC经枯草芽孢杆菌固态发酵处理后,CGs含量由548.47 mg/kg降至37.78 mg/kg,脱除率为93.66%,表明本研究所用枯草芽孢杆菌脱除CGs的能力较强。
3.2 固态发酵FSC工艺优化
单因素试验结果为正交试验因素水平范围的选择提供了参考依据。发酵时间是影响发酵进程与结果的重要因素,主要通过影响发酵菌株的数量以及产酶量而间接影响发酵结果[22],发酵时间不足会导致抗营养因子脱除量降低,而发酵时间过长则会增加生产成本。单因素试验结果表明,在一定范围内随着发酵时间的增加,发酵FSC中CGs含量逐渐降低,而且下降幅度越来越小;正交试验结果表明,不同发酵时间下CGs脱除量存在显著差异,发酵72 h后,CGs得到有效脱除,若此时继续延长发酵时间,CGs的脱除量不会发生显著变化,而且还会因过度发酵导致FSC中其他营养成分的损失,同时增加发酵成本。发酵温度可通过直接影响菌种的代谢速率、营养需求、酶活性而改变发酵进程和结果,同时可通过影响物质的溶解性、扩散和运输间接影响发酵结果[23],而且不同菌种所需发酵温度不同[24-25]。单因素试验结果表明,在一定范围内随着发酵温度的升高,发酵FSC中CGs含量逐渐降低,而且下降幅度越来越小;正交试验结果表明,不同发酵温度下CGs脱除量存在差异显著,最适发酵温度为39 ℃。枯草芽孢杆菌适宜生长的温度较高[26],因而决定了固态发酵工艺的温度也较高。发酵底物初始含水量对菌种的生长代谢影响很大[27],含水量过高会导致发酵原料黏性增加,料间空隙减少,换气量减少,生长代谢产生的废气会影响菌株的正常生长,从而引起发酵停滞。研究表明,随着含水量的增加,固态发酵棉籽粕脱除棉酚的效果先升高后降低[28]。本研究发现,在一定范围内随着料水比的降低,发酵FSC中CGs含量先保持不变后上升,最适料水比为1.0∶0.6。适宜的接种量对保证发酵效果具有重要意义[23],接种量不足,菌株细胞量减少,相关酶分泌量下降,严重降低发酵效率,而且接种量过少还会因发酵菌株未能及时繁殖到一定数量引起杂菌污染;而接种量过多,菌体生长繁殖过快则会提前进入稳定期甚至衰亡期,从而影响发酵效果。韦涛等[29]利用纳豆芽孢杆菌固态发酵小米糠的研究结果表明,随着接种量的增加,发酵效果先升高后降低。单因素试验结果表明,在一定范围内随着接种量的增加,发酵FSC中CGs含量先下降后上升,最适接种量在6%附近;正交试验结果表明,4%、6%、8%的接种量下CGs脱除量差异不显著,因此确定最优接种量为4%。
3.3 SFFSC对肉鸡生长性能的影响
CGs具有苦味能降低饲粮适口性[30],从而使动物采食量下降。本研究发现,SFFSC组1~21日龄肉鸡ADFI显著高于FSC组。FSC经固态发酵处理后,CGs含量降低,适口性得到改善,从而提高了肉鸡的ADFI。动物采食大量未经处理的FSC会引起急性中毒,CGs进入动物消化道内可分解产生HCN,而氰基(CN-1)可与细胞色素氧化酶的3价铁结合而阻断细胞呼吸链,从而导致动物因细胞窒息而死亡[31];此外,若动物摄入CGs未达到急性中毒剂量,亦会引起慢性中毒,HCN在动物体内解毒过程中产生的硫氰酸盐可导致碘缺乏症,如甲状腺肿、视神经受损及生长性能下降等[14]。Zanu等[32]研究表明,饲粮中添加木薯粉(含CGs)可降低肉鸡的采食量及生长性能;Anjum等[33]研究发现,饲粮中添加5%的FSC可显著降低肉鸡的生长性能;Pekel等[34]研究发现,饲粮中添加10%的亚麻籽可显著降低肉鸡的生长性能。本研究发现,与对照组相比,FSC组肉鸡FBW、ADG和ADFI显著降低,这与前期众多报道一致;FSC经固态发酵处理后CGs含量由548.47 mg/kg降至37.78 mg/kg,SFFSC组生长性能显著高于FSC组,表明固态发酵处理可有效降低FSC中CGs对肉鸡生长性能的消极影响。饲料原料经发酵处理后,大分子蛋白质得到分解,多肽含量增加,益生物质增多,营养组成发生积极变化,因此发酵饲料往往能表现出一定的促生长作用[35-36]。本研究发现,FSC经固态发酵处理后粗蛋白质和多肽含量得到提高,但SFFSC组肉鸡FBW、ADG、ADFI与对照组相比均有略微降低且F/G增加,即SFFSC没有表现出促生长作用。这可能是由于固态发酵处理并未有效降低FSC中可溶性非淀粉多糖(soluble nonstarch polysaccharide,SNSP)的含量,SFFSC组饲粮中SNSP含量过高造成了食糜的营养屏障效应[37],从而使SFFSC并未表现出促生长作用。
3.4 SFFSC对肉鸡免疫和抗氧化功能的影响
血清TP含量间接体现了机体免疫水平的高低[38],而血清IgG、IgM含量能直接反映动物的全身免疫状态[39],血清中MDA含量、T-SOD活性、T-AOC是反映机体抗氧化功能的重要指标[40]。研究表明,CGs在机体内产生的HCN在解毒过程需要消耗体内的含硫氨基酸、硫代硫酸盐等硫供体[41],而体内含硫氨基酸及其中间代谢产物对维持机体免疫和抗氧化功能起着重要作用[42-43],因此FSC中CGs可导致肉鸡免疫和抗氧化功能的降低。本研究发现,SFFSC组与对照组21日龄肉鸡血清TP含量相近且均高于FSC组,SFFSC组21日龄肉鸡血清IgM含量显著高于对照组和FSC组,SFFSC组21日龄肉鸡血清IgG含量与对照组无显著差异但显著高于FSC组;SFFSC组21日龄肉鸡血清T-SOD活性与对照组无显著差异且均显著高于FSC组,SFFSC组21日龄肉鸡血清MDA含量与对照组无显著差异且均显著低于FSC组。由此表明,枯草芽孢杆菌固态发酵处理FSC可有效降低CGs对肉鸡免疫和抗氧化功能的不利影响。
4 结 论
① 枯草芽孢杆菌固态发酵FSC最优工艺为:发酵时间72 h、发酵温度39 ℃、料水比1.0∶0.6、接种量4%。
② FSC经优化工艺发酵处理后,CGs脱除率为93.66%,营养组成得到改善。
③ 本试验建立的固态发酵工艺可有效降低FSC对1~21日龄肉鸡生长性能、免疫及抗氧化功能的不利影响。