准噶尔盆地东部西泉地区石炭系火山岩岩性识别
2021-01-28李树博郭旭光郑孟林王泽胜刘新龙
李树博,郭旭光,郑孟林,王泽胜,刘新龙
(中国石油新疆油田分公司勘探开发研究院,新疆克拉玛依 834000)
0 引言
随着油气勘探的不断深入,常规碎屑岩油气藏已经难以满足现实需求,近十几年来,准噶尔盆地、松辽盆地、塔里木盆地等火山岩油气勘探相继获得了突破,引起了石油工作者的重视。实践证明,火山岩油气藏勘探正逐步成为油气产量、储量新的重要增长点[1-3]。火山岩矿物成分、结构等取决于不同火山作用、岩浆类型和后期构造运动的叠加改造,其测井响应特征规律性较差[4-5],岩性识别难度较大,解决岩性识别问题是火山岩油气藏成功勘探的关键[6-7],只有在准确地识别火山岩岩性的基础上,才能有效地开展储层评价研究,进而提高勘探成功率。
传统的岩性识别方法有岩屑录井识别、钻井取心鉴定及测井资料识别等,其中岩屑录井识别的精度直接取决于录井质量,然而钻井取心不仅很难对目标地层做出完整的描述[9-10],成本还比较高,不能在生产中大规模普及应用。测井资料种类丰富,成本低易于获得,具备纵向连续、横向对比性强的特点[11],因此,测井资料识别法是目前识别火山岩岩性的主要手段。由于不同测井曲线之间携带的岩性信息具有一定的相关性和重叠性,仅运用常规岩性交会图版难以对复杂岩性进行全面而精确地识别。为了充分运用测井资料,随着多元数据挖掘方法的快速发展,利用聚类[12-13]、判别[14-15]和降维[16-18]等数据挖掘方法对测井资料进行精细分析已成为识别复杂岩性的常用方法。自准噶尔盆地东部西泉地区石炭系火山岩油气藏发现至今,专家学者对该区域火山岩岩性识别方法的探索脚步从未停止。具有代表性的有:张丽华等[19]在岩心归位和岩性复查的基础上,利用常规测井资料,提出基于二维和三维岩性识别图版的识别流程;马尚伟等[20-21]采用全岩主量元素分析结合岩心、镜下薄片和成像测井进行岩性划分;黄力等[22]利用主成分分析法从岩石测井响应敏感性角度定量识别岩性。由于研究区石炭系火山岩测井响应多解性强,前人的成果中未能有效解决不同岩性测井响应特征相似所带来的识别误差,针对未知火山岩岩性未能建立有效的定量判识方法。
本次研究充分利用岩心资料和镜下薄片鉴定成果,确保测井响应特征的代表性,利用主成分分析法对复杂数据进行有效降维方面的优点,对目标测井曲线进行数据优化,提高不同岩性之间测井响应特征差异的敏感性,并结合典型判别函数在判别未知样本归属方面的显著优势,首次在研究区尝试运用复合数据挖掘方法识别石炭系火山岩岩性,并建立不同岩性定量判别模型,以期为研究区石炭系火山岩岩性识别提供参考依据。
1 研究区概况
西泉地区位于准噶尔盆地东部隆起西翼北三台凸起西斜坡[23-24][图1(a)],为凸起上规模最大的近东西向鼻状构造[25]。北三台凸起东接吉木萨尔凹陷、西临阜康凹陷、南抵阜康断裂带,北连沙奇凸起,是自晚海西期开始发育,又历经印支期、燕山期和喜马拉雅期共4 期大的构造运动形成的继承性古凸起[26]。其中受海西期构造运动的影响,北三台凸起在中—晚石炭世发生了大规模强烈火山喷发活动,形成石炭系火山岩地层;早—中二叠世受南部博格达山挤压隆升作用,北三台基底凸起形成,石炭系经历强烈持续性风化-淋滤-剥蚀作用,导致部分中—晚石炭统和早—中二叠统缺失[26]。
根据已钻探井资料及地震解释成果,将西泉地区石炭系自下而上分为:下序列松喀尔苏下亚组火山岩段(C1sa)、中序列松喀尔苏上亚组火山沉积岩段(C1sb)和上序列巴塔玛依内山组火山岩段(C2b),其中C1sa主要由火山熔岩类组成,C1sb主要由火山沉积岩和沉积岩呈互层状组成,C2b主要由火山熔岩类和火山碎屑岩类组成[图1(b)]。自2006 年西泉1 井石炭系火山岩油藏发现以来,西泉地区已累计提交石炭系探明储量近7 000 万t,且在石炭系3 个地层序列中均有油气发现,展现了该区域石炭系火山岩广阔的油气勘探前景。
2 火山岩测井响应特征
准噶尔盆地东部西泉地区石炭系火山熔岩类、火山碎屑岩类和火山沉积岩类均有发育[27-28]。通过筛选研究区内51 口石炭系钻遇厚度大且连续性好的钻井,以精细归位校正后的266 块岩心资料和镜下薄片鉴定样品为基础,对岩性单一、厚度较大且测井曲线稳定性相对较好的井段进行数据提取,如表1所列,提取出玄武岩、安山岩、英安岩、火山角砾岩、凝灰岩、含角砾凝灰岩、凝灰质砂砾岩、凝灰质泥岩和炭质泥岩共9 种火山岩岩性的自然伽马(GR)、地层真电阻率(Rt)、冲洗带电阻率(Rxo)、密度测井(DEN)、中子孔隙度(CNL)和声波时差(AC)共计6 条常规测井曲线数据,并以各不同岩性测井曲线值作为主要变量进行不同岩性样本均值及方差的计算。安山岩和英安岩的地层真电阻率(Rt)和冲洗带电阻率(Rxo)存在方差值极大异常,表明这2 种岩性电阻率变化较大,难以利用电阻率相关曲线有效表征岩性分布。除此之外,其余大部分岩性对应测井曲线方差值较小,可以作为有效数据来识别岩性。
表1 西泉地区石炭系不同岩性火山岩的测井响应值Table 1 Log response values of Carboniferous volcanic rocks with different lithologies in Xiquan area
3 岩性识别方法
主成分分析法的基本思想是考虑各变量指标间的相关性,利用降维方法将参与运算的多个变量指标通过数学方法转换成少数几个互不相关的指标,且每个指标能代表多个原始变量,从而使研究变成一种更简单的统计学方法。典型判别分析法的基本思想是投影[29-32],通过建立一种线性组合,即最优化的数学模型来概括不同变量间的差异性,同时根据已知样本分类判断未知待判断的变量样本归属的统计学方法。由于这2 种方法在数据处理和变量类型判别中的显著优势,已经在地学界得到了广泛的运用,尤其是在复杂岩性识别和储层评价等方面[33-35],准确性得到了提高。
3.1 主成分分析法
假设样本数为n,每个样本对应的变量数为P,得到n×p维原始样本阵Xn×p。根据前期样本选取的结果,建立原始数据集X560×6
(1)由于所选取的6 个变量具有量级和量纲的差异性,为了使原始变量的量级和量纲保持在同一个维度上,须对原始变量进行标准化处理,得到新的无量纲数据序列:ZGR,ZRt,ZRxo,ZDEN,ZCNL和ZAC,其均值为0,方差为1(表2)。
表2 西泉地区石炭系不同岩性火山岩的测井响应值(标准化后)Table 2 Log response values of Carboniferous volcanic rocks with different lithologies in Xiquan area(after standardization)
对标准化后的数据集进行相关系数矩阵计算
式中:R为样本相关系数矩阵;x'为样本标准化矩阵。
根据式(2)得到研究区石炭系的变量相关系数矩阵(表3),正相关关系中ZAC与ZCNL的相关性最好,为显著相关,相关系数为0.911;负相关关系中ZAC与ZDEN的相关性最好,为显著相关,相关系数为-0.915,除此之外,ZCNL与ZDEN,ZRt与ZRxo,ZCNL,ZAC,ZGR与ZRt,ZCNL之间亦具有较好的相关关系,这表明不同参数间存在不同程度的信息重叠现象,这就使得在识别研究区火山岩岩性中常规双变量交会图版不仅无法反映出所有变量间的相关性,还存在着或多或少的信息重叠。
表3 西泉地区石炭系变量相关系数矩阵Table 3 Correlation coefficient matrix of Carboniferous variables in Xiquan area
各岩性中ZAC曲线的标准差值相对较小(参见表2),结合相关系数矩阵中各曲线的相关性,选取AC与CNL、DEN进行三参数散点交会分析(图2),岩性识别效果不理想,岩性间普遍存在边界不清晰,岩性重叠现象较严重,所以仅通过常规交会图版很难将岩性区分清楚。
(2)利用Jacobi 线性变换方程对相关系数矩阵进行计算,求解该相关系数矩阵非负特征值λi(i=1,2,3,…,m)和特征向量式中:Im为单位矩阵;λi为相关系数矩阵R的非负特征值,同时也是主成分Yi(i=1,2,…,m)的方差,方差越大,说明主成分Yi包合变量x1,x2,…,xm包含信息的能力越强。
将λi按由大到小的顺序排列,即λ1>λ2>…λm>0(表4)。
表4 特征值及方差贡献率计算结果Table 4 Calculation results of eigenvalue and variance contribution rate
(3)主成分P值一般选取累计方差贡献率≥80%或特征值λi>1 的前P个特征值。由表4 可知,满足λi>1 的主成分变量为Y1和Y2,其特征值分别为4.173 和1.035,且Y1+Y2累计方差贡献率为86.798%,利用Y1和Y2这2 个主成分变量可充分表征6 个原始变量所反映的大部分信息,达到了对变量降维处理的目的。主成分Y1和Y2的特征向量计算结果如表5 所列。
表5 主要特征值特征向量计算结果Table 5 Calculation results of main eigenvalue eigenvector
根据表5,得到对应的主成分方程
利用主成分方程F1和F2所做的散点交会图版识别研究区石炭系岩性(图3),识别精度得到了有效提高,各类岩性样本有了较为明显的区分界线:玄武岩、安山岩、英安岩、凝灰岩和炭质泥岩岩性分布界线清晰;凝灰质泥岩、含角砾凝灰岩、凝灰质砂砾岩和火山角砾岩也可以在交会图版中看到一定的区分规律。与常规双变量交会图版中大量岩性重叠现象相比,主成分交会图已经可以进行初步的岩性划分,说明在西泉地区利用主成分分析有利于解决火山岩岩性各变量样本间存在的相关性问题。
3.2 典型判别分析法
典型判别分析法是一种依据方差分析原理建立的判别方法。针对P维空间中的点Xi=(Xi1,Xi2,…,Xip),i=1,2,…,n通过一组线性函数将P维空间中的全部观测点统一转化到m维空间,然后在m维空间中对样本集进行分类,在此过程中采用方差分析思想,依据使组间均方差与组内均方差之比最大的原则,选择最优的有效线性函数。
式中:ym(xi)为判别指标;ci为各变量的系数,也称为判别系数;xij为反映研究对象特征的变量。
(1)基于前期对原始变量进行主成分分析优化的结果,结合典型判别分析法在根据已知样本分类来判断未知样本归属方面的优势,建立判别主成分模型
式中:Gi为研究区石炭系第i种岩性的判别函数;a,b,c分别为各岩性判别函数系数或常数,取值如表6所列。
表6 西泉地区各岩性判别函数系数和常数Table 6 Coefficients and constants of each lithology discriminant function in Xiquan area
由式(7)得到典型判别函数特征值、方差贡献率和相关性指标(表7),其中典型判别函数1 和2特征值的累计方差贡献率达到100%,说明利用典型判别函数1 和2 即可包含绝大部分变量的信息[36]。
表7 典型判别函数相关指标Table 7 Related indicators of canonical discriminant function
(2)把主成分方程F1和F2带入式(7),建立研究区石炭系不同岩性的判别模型
(3)用岩性判别模型对原始岩性数据进行回判可靠性检验(表8),判别模型对91.8%的原始变量进行了正确判别,针对全部原始变量进行交叉验证(交叉验证中,每个原始变量均由该变量之外的其他变量所属判别模型进行再次分类),准确率达到91.4%。其中玄武岩、安山岩、英安岩、凝灰岩、含角砾凝灰岩、凝灰质泥岩和炭质泥岩的判别分析准确率较高,均在89.0%以上;火山角砾岩和凝灰质砂砾岩判别分析准确率相对较低,经交叉验证后准确率均在70.0%以上,所有判别模型达到初步识别岩性的要求。
表8 西泉地区各岩性定量判别模型可靠性验证Table 8 Reliability verification of quantitative discrimination models for each lithology in Xiquan area
4 应用效果分析
以准噶尔盆地东部西泉地区石炭系岩性判别模型为基础,对主要预探井段进行岩性识别,先对未知岩性段对应的连续测井曲线值进行统一标准化,再将每一点标准化曲线值带入岩性判别模型进行计算,根据最大相似性原则进行比较,计算结果最大者即为该点所对应判别岩性。
以研究区A 井为例(图4),对3 275.0~3 279.0 m井段进行岩性判断,录井解释3 275.0~3 278.0 m为凝灰质泥岩,3 278.0~3 279.0 m 为炭质泥岩,而综合岩性判别模型解释3 275.0~3 275.3 m 为凝灰质泥岩,3 275.3~3 275.8 m 为凝灰岩,3 275.8~3 277.0 m为火山角砾岩,3 277.0~3 277.7 m为凝灰岩,3 277.7~3 278.0 m 为凝灰质泥岩,3 278.0~3 278.8 m 为炭质泥岩,3 278.8~3 279.0 m 为凝灰岩,综合岩性判别模型解释结果与微电阻率成像显示结果吻合率更高,这说明综合岩性判别模型解释的火山岩岩性比录井解释的岩性更加精细,与薄片鉴定和微电阻率成像对应效果更好,同时通过此方法对火山岩薄互层识别也更加精确,表明该岩性识别方法在研究区具有一定的可靠性和适用性,在缺少石炭系钻井岩心资料的深度段可以有效地进行岩性识别。
5 结论
(1)准噶尔盆地东部西泉地区石炭系火山岩的类型复杂多样,利用常规双变量交会图版进行岩性识别的效果不理想,存在岩性边界不清晰,不同岩性重叠等问题,而利用以主成分分析和典型判别分析为主的综合数据挖掘方法既消除了不同特征测井曲线携带岩性信息中的相关性和重叠性,又充分综合了更多测井曲线的信息,提高了研究区石炭系火山岩岩性识别的准确性和实用性。
(2)基于主成分特征值大于1 且主成分累计方差贡献率大于80%的原则,构建出适用于准噶尔盆地西泉地区火山岩岩性识别的综合主成分变量Y1和Y2,结合典型判别分析法解释的火山岩岩性较录井解释的岩性更加精细,与薄片鉴定及成像测井资料的对应效果更好,对火山岩薄互层的识别能力也有了较大程度的提高。