基于深度全连接神经网络的大坝变形预测研究
2021-01-27岳建平周钦坤
杨 恒 岳建平 邢 尹 周钦坤
1 河海大学地球科学与工程学院,南京市佛城西路8号,211100
随着我国大坝等水利工程建造数量的大幅度增加,大坝的安全性受到社会各界的广泛关注。目前,对观测得到的大坝变形多源监测数据进行准确预报与反演是保障大坝安全的重要手段[1]。大坝变形的影响因素主要可以分为水压、温度和时效3类,水压因素直接作用在大坝上,与水库水位变化有密切关系;温度因素间接作用于大坝,温差和边界约束是产生应力的主要原因[2];而时效因素是许多非线性因素的综合,对于混凝土大坝,主要反映了坝体混凝土材料特性(如混凝土徐变、老化等)、坝基岩体的材料特性(如岩石蠕变、节理裂隙等)、坝体结构缺陷(如施工质量等)、坝基结构缺陷(如软弱结构面等)等因素对变形效应量的影响[3],另外水位、温度和时效之间也存在着一定的相关性。由于各种影响因素的内在联系错综复杂,主次关系变化不定,所以高效地预测大坝变形依旧存在着很多挑战。
随着人工神经网络的不断发展和模糊数学理论的完善,不少学者将二者结合应用于大坝变形预测,这些改进方法虽然对传统神经网络进行了优化,预测精度有所提高,但模型方法参数较多,建模过程繁琐,导致建模比较困难。而基于深度学习算法的全连接神经网络包括多层隐藏层,可实现无监督学习,从而以更少的模型参数、更快的收敛速度和更高的拟合精度来逼近现实[4],在水质预测[5]、大气污染预测[6]、降雨预测[7]等领域应用较多,而在大坝变形预测领域应用较少。
本文利用丰满大坝实测的多源监测数据,建立基于最优学习算法的深度全连接神经网络预测模型,对丰满大坝位移变形量进行预测,并将预测结果与传统BP神经网络的预测结果进行对比,以验证本文深度全连接神经网络预测模型预测大坝位移变形的可行性和优越性。
1 构建深度全连接神经网络
1.1 全连接神经网络
全连接神经网络与传统神经网络相比更强调网络的深度。隐藏层和输出层层数之和为网络的深度,记为d,隐藏层可由多层构成,记为hi,隐藏层对应的激活函数记为Ai。
隐藏层第1层的输出值h1为:
h1=A1(W1x+b1)
(1)
隐藏层其他层的输出值hi为:
hi=Ai(Wihi-1+bi), 1
(2)
式中,Wi为权重值,bi为偏置。
常见的激活函数包括对数S型函数sigmoid、双曲正切函数tanh和线性整流函数ReLu。
1.2 优化学习算法
梯度下降法是目前使用最为广泛的优化算法,也是传统神经网络和机器学习最常用的优化方法,主要包括批量梯度下降法(BGD)和随机梯度下降法(SGD)。其中,BGD的每步迭代使用全部的训练数据,所以参数更新方向比较稳定,但收敛速度较慢,比较耗时;而SGD的每步迭代随机选取训练样本,收敛速度较快,但由于训练样本的随机性,参数更新不稳定,因此二者都存在比较大的缺陷。随着深度学习的兴起,很多深度优化算法被提出并用于对网络的优化训练。
1.2.1 小批量梯度下降法(MBGD)
MBGD[8]是BGD和SGD两种梯度下降法的综合体现,在每步迭代过程中从n个训练样本随机抽取m(m 1.2.2 动量法(momentum) 动量法[9]是为解决SGD更新方向完全依赖当前batch从而使更新十分不稳定而提出的。在更新时通过动量因子保留之前的更新方向,并加入该轮的梯度,从而提高学习效率,增加稳定性,能有效避免模型陷入局部最优。具体迭代更新公式为: (3) v←γv+ηg (4) 式中,γ为动量因子,一般设置为0.9,η为学习率,θ为初始参数,v为下降动量。 1.2.3 自适应学习率的优化算法(AdaGrad) AdaGrad算法[10]是借鉴模型引入正则化项以缓减过拟合现象的思路提出的,该算法可以解决梯度消失的问题。参数更新的迭代过程为: (5) r←r+g⊙g (6) (7) θ←θ+Δθ (8) 式中,η为全局学习率,δ为数值稳定量,θ为初始参数,r为梯度累计量。 RMSProp算法[11]是AdaGrad算法的扩展算法,将AdaGrad算法迭代过程式(6)修改为式(9),能有效克服AdaGrad算法梯度急剧减小的问题。具体参数更新为: r=ρr+(1-ρ)g⊙g (9) 式中,ρ为指数衰减率。 1.2.4 自适应矩估计优化算法(Adam) Adam算法[12]是利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率,将momentum法和RMSprop算法的优势相结合。参数更新的迭代过程为: (10) m←p1m+(1-p1)g (11) v←p2v+(1-p2)g⊙g (12) 由于m和v的初始值取0,所以需要对m和v进行纠正: (13) (14) (15) θ←θ+Δθ (16) 1)数据预处理。训练样本和测试样本的划分及数据标准化处理。 2)网络构建。确定网络结构,激活函数和损失函数的选取。 3)优化算法的选取。将经过标准化处理的训练样本数据输入步骤2)的网络模型,经过多轮调试,设置MBGD、momentum法、RMSprop算法和Adam算法的相关参数,利用设置好的4种深度优化学习算法对网络模型进行优化训练,通过观察训练损失函数值的变化曲线,选取最合适的优化学习算法,得到基于最优学习算法的大坝变形预测模型。 4)模型预测。将测试样本数据中各影响因子输入步骤3)的网络模型,对大坝位移值进行预测。 5)模型评价。通过MAE、MAPE和 RMSE三种评价指标对预测模型进行评价。 本文选取丰满大坝某坝段监测点1985-01-04~1988-04-09共187期的多源监测数据进行分析,选取前160期监测数据作为训练样本,后27期监测数据作为测试样本。 为消除不同量纲对模型带来的影响并提高神经网络的运行效率和预测精度,需要对原始数据进行预处理。本文使用min-max标准化将原始数据映射到[0~1]之间,具体计算公式为: (17) 相应的反归一化处理计算公式为: x=y(max(x)-min(x))+min(x) (18) 式中,y为预处理后的样本数据,x为原始样本数据,min(x)和max(x)为样本中各输入对应的最小值和最大值。 2.2.1 网络结构的设置 图1 深度全连接神经网络大坝变形预测模型结构Fig.1 Structure of dam deformation prediction model with deep fully connected neural network 2.2.2 模型搭建平台 本文程序的实现基于python3.7环境和PaddlePaddle深度学习框架,隐藏层使用的激活函数是sigmoid函数,输出层采用的是tanh函数;大坝位移预测属于回归问题,所以选用的损失函数为均方误差。 2.3.1 优化算法超参数的设置 本文选用MBGD、momentum法、RMSprop算法和Adam算法等4种不同的优化学习算法对模型进行训练。经过多轮调试,最终确定最优学习率都取0.01,momentum 法动量因子γ取0.9,RMSprop算法ρ值取0.95,δ采用默认值1×10-6;Adam算法δ采用默认值1×10-8,p1和p2分别取0.9和0.99;中间变量都默认取0,随机选取各初始参数。 2.3.2 网络训练 将经过标准化处理的训练样本数据各影响因素和对应的大坝实测位移量作为输入,采用设置好的4种优化算法对网络进行优化训练。本文训练采用双层循环,内层循环设置batch-size为10,即每次迭代随机抽取10组样本数据更新参数;网络外层循环epoch-num取100,即进行100轮训练,在每轮迭代开始前要将训练数据进行随机打乱。通过观察各优化算法损失函数值的变化情况选择最合适的优化算法,将训练批次编号作为X轴,该批次的训练损失作为Y轴,4种优化算法损失函数值的变化曲线如图2~5所示。通过观察可知,Adam算法的收敛速度最快、效率最高,并且最终损失值降到最低值0.027。 图2 MBGD损失函数值变化曲线Fig.2 MBGD loss function value change curve 图3 Momentum法损失函数值变化曲线Fig.3 Momentum loss function value change curve 图4 RMSProp算法损失函数值变化曲线Fig.4 RMSProp loss function value change curve 图5 Adam算法损失函数值变化曲线Fig.5 Adam loss function value change curve 通过对比发现,Adam算法为最优深度学习算法,所以本文运用基于Adam算法的深度全连接神经网络对大坝位移变形量进行预测。将标准化处理后的27期测试样本数据中各影响因子输入网络模型,预测所对应的位移变形量,然后通过反标准化处理得到最终的位移预测值,具体结果见表1(单位mm)。为进一步评估本文神经网络的预测精度,利用传统BP神经网络对同样的大坝监测数据进行训练并预测,BP神经网络的隐藏层为1层,隐藏层神经元个数根据经验公式和反复实验取13,最终确定BP神经网络结构为6-13-1,训练方式为默认的梯度下降法,其他参数的设置和激活函数的选取与本文神经网络一致,预测结果见表1(单位mm)。 由表1可知,本文深度全连接神经网络和传统BP神经网络都可以对大坝位移变形进行有效的预测,而本文神经网络的预测值与大坝位移的真实值更接近。为更加客观地评价本文深度全连接神经网络的预测精度,通过MAE、MAPE和RMSE三种评价指标进行评价,具体计算结果见表2(单位mm)。由表可知,本文神经网络的预测精度更高,能更好地描述大坝位移的变形趋势。 表1 两种神经网络预测结果对比 表2 两种模型3种指标的计算结果 本文通过PaddlePaddle深度学习框架,将深度全连接神经网络引入大坝变形监测领域,并选择最优的深度学习算法对深度全连接神经网络进行优化训练,建立了基于Adam算法的深度全连接神经网络大坝变形预测模型。通过实测的大坝多源监测数据验证表明,该预测模型既能增加传统神经网络的非线性学习能力,又能提高拟合预测的精度,很好地避免了模型的过拟合,可更加准确地描述大坝的真实状态,为大坝的安全施工和运行提供参考依据。1.3 深度全连接神经网络的建模步骤
2 实例分析
2.1 数据预处理
2.2 全连接神经网络的构建
2.3 优化算法的选取
2.4 模型预测
2.5 模型评价
3 结 语