APP下载

矢量Radon变换波场分离方法研究现状与展望

2021-01-22苑益军邱新明王士成

石油物探 2021年1期
关键词:面波波场横波

刘 晟,苑益军,邱新明,王士成

(1.中国地质大学(北京)地球物理与信息技术学院,北京100083;2.福建省地震局,福建福州530001)

随着油气勘探开发的不断深入,传统单分量纵波地震技术已难以解决某些岩性油气藏、裂缝性油气藏等复杂油气藏的预测问题;而多分量地震技术可以获取更加丰富的波场信息,弥补单纯使用纵波的不足,为预测地下复杂介质结构和流体等提供更丰富的信息,近年来越来越受到业界的关注[1-3]。

多波多分量地震勘探是在纵、横波震源激发下,采用多分量检波器接收的一种地震勘探方法。相对于纵波地震勘探使用单一垂直分量检波器,多分量检波器可以同时接收到丰富的矢量波场信息。同时,多波多分量地震勘探也给地震数据处理和解释带来了困难,如在多波多分量地震勘探时,由于P-P波和P-SV波具有不同的运动学和动力学传播特性,两种波场的混叠会影响转换波地震数据的处理及解释[4]。更重要的是,多分量地震技术的主要目标不仅是运动学信息的挖掘,更主要的是动力学信息的利用。因此,如何在多分量地震数据处理中,保持动力学信息不畸变,即保幅、保矢量特征地压制噪声、分离不同类型的波场是多分量地震数据处理的关键[5]。

在多分量地震数据处理中,波场分离是首要工作。多年来国内外相关领域学者对波场分离方法开展了深入研究和讨论,并利用地震波的动力学和运动学特征研究出多种波场分离方法,主要包括:①标量法,如FK滤波法[6]、Radon变换法[7-8];②矢量法,如极化滤波法[9]、波动方程法[10]、中值滤波法[11]等。

在上述方法中,Radon变换法在波场分离中具有一定的优势,它利用反射波、折射波、转换波、面波和直达波到达时间及速度的不同与在Radon域中的对应关系,可以有效地将它们分离开来[12]。但传统Radon变换也存在一些不足,如变换前、后有效信号的AVO特性易发生变化,不能有效保持多分量地震信号的矢量特征等。因此,基于传统Radon变换特点,采用基于组稀疏的矢量Radon变换纵横波分离方法,以克服传统Radon变换的不足,保持地震波的振幅特性。本文首先回顾了Radon变换理论与发展现状;然后介绍了基于组稀疏的矢量Radon变换纵横波分离方法,并通过模型数据与非矢量Radon变换进行了对比分析;最后,阐述了复矢量Radon变换在多分量地震数据处理中的可行性。

1 Radon变换及其特点

1917年,奥地利著名数学家拉东提出了经典的Radon变换理论,证明该变换有且仅有唯一可逆解,并给出了它的逆变换公式。Radon变换作为一种数学变换,在地震数据处理中备受关注,被广泛用于波场分离或提取不同类型的波场信息[7-8]。

Radon变换是对二维数据在特定路径上的曲线积分[13],其目的是将数据中规律排列的信号分解为Radon域内稀疏的系数,以便识别和分离信号。Radon正向变换和伴随变换公式分别为:

d=Lm

(1)

madj=LHd

(2)

式中:d,m,madj分别为以向量形式表示的地震数据、Radon模型和估计模型;L为变换算子,LH为伴随算子。

起初,采用最小平方法反演Radon模型,又称为最小二乘Radon变换[14],但其分辨率不高,且计算需要耗费大量的时间。后来,采用稀疏约束反演Radon模型,即高分辨率Radon变换[15],使分辨率有了很大提高,其公式为:

(3)

高分辨率Radon变换是一个非线性反演问题,求解方法主要包括:Levinson递推算法、Cholesky分解法、共轭梯度法。通常采用迭代重加权共轭梯度算法求解[16],并在受限模型空间中求解以减少计算量,提高计算效率。

近年来,国内外一些学者从不同的角度对Radon变换进行改进,以适应矢量场处理,并取得了一些成果[17]。但现有Radon变换方法仍然局限于对各分量信号单独进行处理,无法做到在多分量地震信号处理过程中保持矢量特征。比如,对于深海多分量地震数据,利用已有的波场分离方法压制P分量上的鬼波和多次波并不困难,但对于低信噪比的三分量地震数据,采用已有的Radon变换方法很难做到在保持多分量矢量特征的同时分离不同波场并压制噪声。对于多分量地震数据,由于各个分量波场强弱不同,信噪比存在差异,现有Radon变换方法在波场分离时不能较好地保持信号的矢量特性。

2 基于组稀疏的矢量Radon变换

多分量地震数据是一个矢量波场,在Radon变换中,将多分量信号进行联合处理可以有效避免伤害弱分量信号。对于多分量地震信号,RODRIGUEZ等[18]证明基于组稀疏表示的方法可以有效保持各个分量之间振幅的相对关系。将多分量信号在变换域中同一位置的各分量稀疏系数组成向量g,其L2范数‖g‖2的大小决定了系数组稀疏的程度[19]。基于组稀疏的矢量Radon变换方法将‖g‖2作为高分辨率Radon变换的模型加权矩阵代入公式(3)中进行计算,在受限模型空间中运用迭代重加权共轭梯度算法得到Radon域系数。

图1a和图1b分别给出了X分量和Z分量的正演模型数据,它是由一个多层各向异性介质模型(模型参数见表1)的正演模拟、预处理和添加随机噪声后得到的结果。由图1可见,在X分量上S波能量较强、P波能量较弱,而在Z分量上则正好相反。图2 为采用基于组稀疏的矢量Radon变换方法后得到的Radon域图像。由于各分量数据在Radon域能够稀疏表示,因此,在Radon域,采用定义切除参数可分离P波和S波。图3和图4分别为基于组稀疏的矢量Radon变换分离出P波和S波再经过Radon反变换后得到的结果。由图2至图4可见,波场分离前、后各分量能量具有较好的一致性。同时,由于噪声在Radon域中不收敛,因此反变换后随机噪声也得到了较好压制。为了验证该方法的有效性,我们对比了矢量Radon变换与非矢量Radon变换P波和S波分离结果。图5为非矢量Radon变换后得到的Radon域图像;图6和图7分别为非矢量Radon变换分离出P波和S波并经过Radon反变换后得到的结果。与非矢量Radon变换结果相比,矢量Radon变换波场分离前、后各分量能量的一致性更好。

图1 X分量(a)和Z分量(b)正演模型数据

为了进一步说明矢量Radon变换的有效性,我们分别从非矢量Radon变换和基于组稀疏的矢量Radon变换分离后的P波和S波数据中抽取了第100道数据的部分波形与原始地震数据进行对比。图8和图9分别给出了X分量和Z分量第100道数据波场分离前、后的波形。由图8和图9可见,在保持原始地震数据的振幅一致性上,基于组稀疏的矢量Radon变换优于非矢量Radon变换。此外,我们利用X分量和Z分量的部分数据制作了合成地震记录并绘制了矢端图(图10)。图10a至图10c分别为原始地震数据、采用非矢量Radon变换和基于组稀疏的矢量Radon变换的X分量和Z分量的合成地震记录;图10d至图10f分别为将图10a至图10c中相应X分量和Z分量的值绘在同一坐标中而形成的矢端图像。矢端图像是一个时间窗口中地震波质点的运动轨迹曲线图,反映了地震波的偏振情况。由图10d 至图10f可见,与非矢量Radon变换相比,基于组稀疏的矢量Radon变换得到的矢端图像的质点运动轨迹与原始数据更为相似,说明在保持地震数据的矢量特性上,基于组稀疏的矢量方法更具优势。

表1 正演模型参数

图2 基于组稀疏的矢量Radon域变换图像

图3 基于组稀疏的矢量Radon变换P波分离结果

图4 基于组稀疏的矢量Radon变换S波分离结果

图5 非矢量Radon域变换图像

图6 非矢量Radon变换P波分离结果

图7 非矢量Radon变换S波分离结果

图8 X分量第100道数据波场分离前、后波形比较

图9 Z分量第100道数据波场分离前、后波形比较

图10 采用非矢量Radon变换和基于组稀疏的矢量Radon变换得到的X分量和Z分量的合成地震记录及其矢端图像

基于组稀疏的矢量Radon变换也有一定的局限性,如它只考虑了多分量地震数据的振幅一致性,没有充分考虑到多分量数据的相位和偏振特性。此外,由于波场分离所使用的双曲Radon变换具有时变特性,因此,该方法只能在时间域进行计算。相对于传统求解算法来说,该方法在受限空间中求解可以提高计算效率,但相对于频率域的求解算法,其耗时仍然过长。因此,采用频率域的Radon算子,充分利用多分量地震数据的偏振特性和矢量场特性,可以提高波场分离精度和计算效率。

3 复矢量Radon变换

3.1 面波与体波的分离

在多分量地震勘探中,强能量的面波干扰与反射信号经常混叠在一起,严重降低了地震资料的信噪比。因此,压制面波干扰是多分量地震数据处理中的一项重要工作。

对于利用Radon变换压制面波干扰,国内外学者已经进行了较多研究。LUO等[20]利用高分辨率线性Radon变换求取频散能量谱,提高了频散能量谱的分辨率。但地震数据中存在的体波信号和强干扰噪声,不利于提取频散曲线。HU等[21]在高分辨率线性Radon变换的频率-速度(f-v)域中,采用时窗截取分离面波,然而该方法对实际地震数据的波场分离不彻底。TRAD等[22]提出将线性Radon变换和双曲Radon变换联合构成混合Radon变换,将其应用于合成地震记录取得了较好的分离效果,但合成地震记录需要借助测井资料,因此该变换方法的使用范围有限。

针对多分量地震数据面波干扰的压制问题,在高分辨率Radon变换的基础上,充分利用偏振特性。QIU等[23]提出一种适用于多分量地震数据矢量处理的复矢量Radon变换方法。即将具有物理耦合关系的三分量地震数据,通过两两组合,构建复矢量地震数据,其组合公式为:

c(x,t)=x1(x,t)+ix2(x,t)

(4)

其中,x1(x,t),x2(x,t)为两个不同分量信号,c(x,t)为构建的复矢量地震数据。

QIU等[23]证明复矢量Radon变换在面波频散分析中,能够有效保持各分量的矢量特征,并获得准确的地下速度结构与频散图像。针对R分量和Z分量中的面波干扰,利用面波和体波的偏振特征差异[24],使用复矢量线性高分辨率Radon变换方法,可压制R、Z分量中的面波,保持反射信号的矢量特性。首先将R、Z分量分别作为公式(4)中的实部和虚部,构建复矢量数据,然后利用公式(3) 进行复矢量线性高分辨率Radon变换。对于椭圆偏振波,由于复矢量地震数据在正频率处的振幅谱与其负频率处的振幅谱不同,因此复矢量地震数据在正频率时的瑞利波频散能量与负频率时的瑞利波频散能量存在差异。相比于传统的单分量方法,复矢量数据可以利用这一特性,在f-v域分别计算正、负频率下的Radon变换系数m,并根据它们的椭圆率、相速度、频率等属性差异进行滤波,从而达到利用复矢量线性高分辨率Radon变换压制R、Z分量中面波干扰的效果。

3.2 PP与PS波场分离

在利用地震数据的偏振特性进行纵横波分离时,WANG等[25]提出基于τ-p域的空间矢量旋转波场分离方法,通过利用PP波和PS波的速度差异和偏振特性,提高波场分离精度,但该方法仅对各分量单独进行处理,未考虑多分量数据的矢量特性。而复矢量Radon变换则可以充分保持多分量数据的偏振特性与矢量特性,因此可将其引入到纵横波分离中。

同时,针对纵横波分离中双曲Radon变换在时间域内运算效率过低的问题,TRAD[26]提出了顶点偏移Radon变换(ASRT),并引入叠后Stolt偏移算子,使得变换过程在频率-波数域内进行运算[27],极大地提高了计算效率,其Radon变换公式分别为[28]:

(5)

exp[-ikxx-iωτ(v)τ]dωτdkx

(6)

公式(5)和公式(6)的正向变换和伴随变换可用如下算子形式表示:

(7)

(8)

式中:FFT为快速傅里叶变换;FFT-1为快速傅里叶反变换;M为映射算子;S为求和算子[29]。

因此,可将Stolt算子与复矢量Radon变换相结合,发展出一种保持多分量矢量特征并且具有较高计算效率的波场分离方法。在f-v域,分别计算正、负频率下的Radon变换系数,根据波场的偏振角、速度、频率差异进行滤波,从而分离出PP波和PS波。

3.3 快慢横波分离

横波在穿过一个各向异性层(如裂缝、水平互层)时,会产生横波分裂现象[30]。地面两个水平分量检波器接收到的信息是快、慢横波互相叠合的数据,它们的分离成为转换横波处理中的一大难题[31]。

在裂缝型各向异性介质多波地震勘探中,快、慢横波的走时差反映了裂缝的密度,快、慢横波的偏振方向反映了裂缝的方向[32]。因此,在快、慢横波波场分离过程中保持快、慢横波的走时、相位、振幅与频谱关系不畸变,是实现高精度裂缝预测的前提。

由于各向异性介质反射波同相轴不是标准的双曲线形态,因此为了使积分路径函数能更好地稀疏表示反射波,需要将各向异性介质动校正时差作为路径函数进行变换[33]:

(9)

其中,t0为双程垂直传播时间,vnmo为短排列时差速度,η为非椭圆率各向异性参数。

各向异性波场较为复杂,必须采用分段函数作为积分路径函数,即在不同时窗内,采用不同的路径函数进行变换。横波分裂后,快横波分量和慢横波分量都可沿R和T方向正交分解。因此将R、T分量组合成复矢量数据,在f-v域分别计算正、负频率下的Radon变换系数,再根据地震波场的偏振、速度(频率)等属性差异进行滤波处理可以实现快慢横波分离。

4 结束语

在前人研究的基础上,本文介绍了基于矢量Radon变换进行多分量地震数据波场分离的原理;并利用模型数据初步验证了组稀疏矢量Radon变换方法分离多分量地震数据中P波和S波的有效性。进一步通过二分量组合分析了复矢量Radon变换进行多分量波场分离的可行性。复矢量Radon变换理论分析结果表明,该方法能够充分利用地震波运动学和动力学特征,根据复矢量地震信号在正、负频率下的变换系数与地震波场的偏振特征关系,可弥补传统Radon变换波场分离方法难以保持地震矢量特征的不足。

保持矢量特征的波场分离是多波多分量地震数据处理中的一大难题,如何充分运用多分量地震数据的矢量特性、偏振特性与振幅的相对关系等还需要进一步研究。复矢量Radon变换目前应用较少,在多波多分量地震勘探中,针对不同类型的波场分离应用还需进一步研究。如何从Radon变换系数中提取和利用矢量特征,并将其运用于波场分离以外的地震数据处理技术中,将成为复矢量Radon变换研究的关键。

致谢:感谢中国地质大学(北京)王赟教授在本文撰写过程中提出的许多宝贵意见。

猜你喜欢

面波波场横波
基于横波分裂方法的海南地幔柱研究
横波技术在工程物探中的应用分析
基于SSEC-EWT的地震资料噪声压制算法
gPhone重力仪的面波频段响应实测研究
应用GPU 的傅里叶有限差分逆时偏移
自适应相减和Curvelet变换组合压制面波
水陆检数据上下行波场分离方法
浅析复杂地质条件下的面波探测技术应用
虚拟波场变换方法在电磁法中的进展
扬眉一顾,妖娆横波处