APP下载

菌剂挂膜3D-RBC联合BCO工艺处理养猪沼液废水

2020-12-25刘向阳罗万东张正义郭青松赵天涛

农业工程学报 2020年20期
关键词:硝化菌剂沼液

刘向阳,张 千,罗万东,陈 雪,张正义,郭青松,赵天涛

菌剂挂膜3D-RBC联合BCO工艺处理养猪沼液废水

刘向阳,张 千※,罗万东,陈 雪,张正义,郭青松,赵天涛

(重庆理工大学化学化工学院,重庆 400054)

针对养猪沼液废水寡营养、高氨氮的水质特征,该研究采用耐高氨氮、适应贫营养生长的异养硝化-好氧反硝化(Heterotrophic Nitrification-Aerobic Denitrification,以下简称HN-AD)菌挂膜启动三维结构生物转盘+生物接触氧化反应器(3D-RBC+BCO)组合工艺对沼液进行处理。该文研究了3D-RBC+BCO组合工艺在真实沼液条件下的启动过程及污染物去除效果,重点考察了溶解氧(Dissolved Oxygen,DO)浓度和C/N比2个关键因素对组合工艺污染物去除效果的影响。同时,借助高通量测序技术对DO和C/N比优化过程中微生物群落结构的变化规律进行解析。结果表明:在真实沼液条件下,采用HN-AD菌剂挂膜启动方法,仅用12和18 d就分别完成3D-RBC和BCO反应器的挂膜启动,同时组合工艺对COD、NH4+-N和TN的去除率分别稳定在94.8%、95.7%和80.1%,出水优于城镇污水厂排放一级B标准。在对3D-RBC反应器DO和C/N比的优化过程中,增设底曝后COD、NH4+-N和TN等指标的去除率分别降低了25.4%、15.4%和15.5%。高通量测序结果显示,增加底曝后3D-RBC盘片生物膜中微生物菌属的数量小幅下降,但HN-AD优势菌属的种类与丰度显著降低,导致脱氮效率下降;贫营养型菌属是3D-RBC可以对真实沼液高效脱氮的关键,提高C/N比会显著降低其丰度,进而影响脱氮效果。

膜; 菌;高氨氮;生物脱氮工艺;养猪沼液废水;微生物群落结构

0 引 言

规模化养猪场排放的养殖废水属于中国农业面源重大污染源之一[1-2],其污染治理已被纳入环境保护的重要议程。目前,养猪废水常用厌氧-好氧或厌氧-自然联合法进行处理,具有负荷高、可产沼气等特点[3],但养殖废水经过厌氧发酵处理后,绝大部分COD被去除,而氨氮浓度仍然很高,造成了低C/N比、高氨氮沼液的产生(氨氮187~510 mg/L、COD 732.9~2 325.5 mg/L)[4-9]。受限于养殖场周边有限的消纳田地,大量的沼液需要通过进一步的处理才能排放或回用。但是,由于此类沼液氨氮浓度过高,超出常规脱氮微生物耐受极限,导致其富集困难;同时传统异养硝化菌和好氧反硝化菌脱氮过程中对有机物有较高的需求(C/N>7)[10-11],沼液有机物含量不足影响总氮去除效果[6,8],因此现有处理工艺普遍存在脱氮效果差、工艺流程复杂、处理成本高和达标排放困难等系列问题[12-13]。研究适用于畜禽养殖沼液处理的新型生物处理技术,是保障畜牧业持续发展的迫切需求。

异养硝化-好氧反硝化(Heterotrophic Nitrification- Aerobic Denitrification,HN-AD)是指一类HN-AD菌,可在好氧条件下快速将氨氮、硝态氮(NO3--N)、亚硝态氮(NO2--N)转化为氮气,且整个代谢过程几乎没有 NO3--N和NO2--N积累的生物脱氮过程[14-16]。随着对 HN-AD菌的深入研究,科研人员发现部分HN-AD菌具有污染物耐受浓度高、可适应贫营养环境且污染物去除效率高等优点[17-18],这为利用生物法处理低C/N比、高氮沼液提供了基础。但是,目前有关HN-AD菌的研究主要集中在HN-AD纯菌的筛选、性能的验证[19-20]及机理研究[21-22]上,而对于HN-AD菌工程应用的研究鲜有报道。究其原因,主要为在低氨氮污水处理体系当中,HN-AD菌在于传统脱氮菌的竞争中不具备优势;在高氨氮污水处理体系中已有研究未能解决HN-AD菌在反应体系中的固定和富集问题,无法充分发挥功能菌的优势[23]。作者所在团队前期,首次在三维结构生物转盘(Three-Dimensional Rotating Biological Contactor,3D-RBC)中实现了HN-AD菌的固定和富集,并且该反应器在实验室小试中对模拟高氨氮养殖废水展现出了良好的预处理效果[24],证明经菌剂挂膜富集的HN-AD菌具备高效脱氮效果。

本研究在前期研究的基础之上,构建了3D-RBC和生物接触氧化(Biological Contact Oxidation,BCO)的新型组合工艺,利用耐高氨氮HN-AD菌在贫营养条件下的高效降解性能对沼液进行预处理,随后通过BCO的进一步处理,实现沼液的达标排放。本文研究了3D-RBC+BCO组合工艺在真实沼液条件下的启动过程及污染物去除效果,重点考察溶解氧(DO)浓度和C/N比2个关键因素对组合工艺污染物去除效果的影响,同时借助高通量测序技术对DO和C/N比优化过程中微生物群落结构的变化规律进行了解析,以期为3D-RBC+BCO组合工艺在养殖沼液废水处理中的工程应用中提供理论与实践基础。

1 试验材料与方法

1.1 试验装置

3D-RBC+BCO组合工艺流程如图1所示,主体反应器材质为有机玻璃。主要由3D-RBC预处理和BCO深度处理两部分组成。3D-RBC为凹槽反应器,有效体积为24.0L,低速电机带动三级盘片构成的生物转盘转动,盘片浸没率为40%;BCO为圆柱形反应器,有效体积为6.0L,内部以铁碳微电解-活性炭纤维作为填料,填料填充率为58.6%,3D-RBC与BCO反应器底部均内嵌曝气装置。3D-RBC和BCO反应器内的菌剂接种量均为10%。2反应器分别借助自然接触复氧和人工曝气增氧的方式保持系统内DO分别为2~3和4~6 mg/L。

1.进水池 2.蠕动泵 3.三维结构盘片 4.低速电机 5.中间罐 6.曝气泵 7.铁碳微电解-活性炭纤维填料 8.出水池

1.2 试验用水与接种菌剂

试验用水取自于重庆市巴南区某生猪养殖场沼液池,该养殖场清污方式为干清粪,废水经过厌氧发酵处理排入池内。水质指标见表1,由表1可知,该沼液属于高悬浮物、高有机物、高氨氮含量的“三高”废水,且废水的C/N比较低(约为3)。为避免高悬浮物对污染物去除效果的影响,沼液在进入组合工艺处理系统前进行絮凝沉淀预处理,经预处理后沼液中SS浓度降为90 mg/L左右。

试验所用菌剂为HN-AD复合菌剂,为团队专利产品(专利号:CN201810209983.8)。主要是由假单胞菌(),粪产碱杆菌(),不动杆菌()和苍白杆菌TAC-2(sp.TAC-2)等几种菌株复配而成。该菌剂生长周期短、易于培养,且具有耐高氨氮、寡营养和高效降解性能。

表1 养猪沼液废水水质

注:COD, Chemical Oxygen Demand; TN, Total Nitrogen; TP,Total Phosphorus; SS, Suspended Solid.

1.3 试验方法

1.3.1 反应器的启动运行

3D-RBC和BCO反应器系统的启动,主要是完成HN-AD菌的固定和富集,两个反应器均采用菌剂挂膜启动。挂膜启动过程采用序批式换水的方式,换水周期为48 h,定期监测废水的COD、NH4+-N、TN和TP数值,计算COD、NH4+-N、TN和TP的去除率,通过去除率变化规律以及填料表面生物膜的变化情况,来判断启动是否完成。

1.3.2 运行参数优化阶段

菌剂挂膜启动完成后,在25~30 ℃下,保持3D-RBC和BCO反应器的水力停留时间(HRT)为24 h,以连续流运行方式处理沼液,通过气体转子流量计控制BCO反应器内DO稳定在4~6 mg/L范围内,并通过控制3D-RBC反应器外设曝气装置来增加和取消底曝;试验过程中采用稀释实际沼液、增加氨氮(投加硫酸铵药剂)和投加外碳源(乙酸钠)的方式来控制进水水质,调节沼液C/N比为1、3和6 三个水平,考察DO浓度和C/N比对污染物的去除效果以及微生物群落结构的的影响。

1.4 检测分析方法

1.4.1 常规指标测定

本试验的水质指标均按照《水和废水监测分析方法》[25]进行。所有水样经高速离心机(4 000 r/min)离心5 min后取上清液测定以下各参数:NH4+-N采用纳氏试剂分光光度法;COD指标使用LH-16K型标准化学需氧量消解仪,采用重铬酸钾法测定;TN采用碱性过硫酸钾消解紫外分光光度法测定;TP采用钼酸铵分光光度法;DO采用哈希HQ-30d便携式溶解氧测定仪直接检测。

1.4.2 多样性分析

在参数优化及连续运行阶段,DNA提取和高通量测序[26]采用MobioPowerSoil® DNA Isolation Kit提取填料表面微生物总基因组DNA。完成基因组DNA抽提后,利用1%琼脂糖凝胶电泳检测抽提的基因组DNA。依托上海美吉生物医药科技有限公司进行Illumina MiSeq高通量测序。按指定测序区域,合成带有barcode的特异引物。PCR(ABI GeneAmp® 9700型)采用TransGen AP221-02:TransStart Fastpfu DNA Polymerase。全部样本按照正式试验条件进行,每个样本3个重复,将同一样本的PCR产物混合后用2%琼脂糖凝胶电泳检测,使用AxyPrepDNA凝胶回收试剂盒(AXYGEN公司)切胶回收PCR产物,Tris_HCl洗脱;2%琼脂糖电泳检测。将PCR产物用QuantiFluor™ -ST蓝色荧光定量系统(Promega公司)进行检测定量。根据Illumina MiSeq平台(Illumina,San Diego,USA)标准操作规程将纯化后的扩增片段构建MiSeq文库。

2 结果与讨论

2.1 组合工艺挂膜启动

3D-RBC挂膜启动阶段各污染物的去除情况如图2a所示。挂膜启动前4 d,3D-RBC中各污染物去除呈现快速上升然后迅速下降的趋势,快速上升的可能原因为接种的菌剂增加了沼液中微生物的含量。随后,接种的菌剂进入了适应期,各污染物的去除有了明显的下降;从第5天开始,接种菌剂逐渐适应了新的环境,各污染物的去除呈不断上升的趋势;运行至12 d后,COD去除率提高并稳定至81.3%,NH4+-N去除率提高并稳定至86.1%,TP和TN去除率也稳定至41.7%和78.2%,同时可观察盘片表面附着一层黄褐色的生物膜,结合污染物去除情况可判断3D-RBC挂膜启动成功。

BCO挂膜启动阶段各污染物的去除情况如图2b所示,由图2b可知,BCO挂膜启动前4 d,由于3D-RBC出水波动较大,导致BCO中各污染物的去除波动也较大。但是,从第5天开始,各污染物的去除开始呈现一个逐渐上升的趋势,推测可能是吸附到填料上的接种菌剂适应了BCO中的环境,并逐渐发展成优势菌群,使得有机物去除及脱氮性能提高。运行18 d后,各项污染物实现稳定去除,COD去除率达到91.6%,NH4+-N去除率达到97.1%,TP和TN去除率分别达到31.6%和86.7%。同时观察到填料表面有淡黄色生物膜形成,综上可以判断,BCO完成挂膜启动。此时,组合工艺出水COD、NH4+-N优于城镇污水厂排放一级B标准。据文献报道,在真实沼液条件下,利用活性污泥挂膜的生物膜反应器的挂膜启动时间为40 d[27],远长于菌剂挂膜所需的15~18 d,这表明,菌剂挂膜可显著缩短生物膜反应器的启动时间。

注:a、b图从左到右依次为NH4+-N、COD、TN、TP的去除情况,下同。

2.2 3D-RBC中DO浓度对组合工艺处理效果的影响

图3所示为组合工艺中3D-RBC增加底曝前后系统中的污染物去除变化规律。从图中可以看到,未增加底曝前,组合工艺COD、NH4+-N、TN和TP出水平均浓度分别为56.9、5.5、30.0、8.3 mg/L,其最终出水均低于《畜禽养殖污染物排放标准》(GB 18596—2001)限值。其中出水COD和NH4+-N满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级B标准。RBC增加底曝后,DO升高对RBC去除COD和TP的影响较小,但对NH4+-N和TN的去除影响显著,NH4+-N和TN的平均去除率分别从77.4%和 70.1%降低到58.5%和48.1%。未增加底曝前,3D-RBC内DO浓度为2~4 mg/L,但在增设底曝后DO浓度升高至7~8mg/L,结合进水沼液高氨氮水质和系统内全好氧环境,判断HN-AD菌在整个脱氮过程中发挥主要作用。增设底曝后RBC内DO浓度过高,形成过曝气的状态,可能使得HN-AD菌在与沼液中土著微生物的竞争中处于劣势,难以形成优势化构建,无法发挥功能菌的脱氮优势,进而影响脱氮效果;而增加底曝前后,组合工艺对COD、NH4+-N、TN和TP的平均去除率影响较小,表明DO的上升并不影响BCO的后续处理效果。综上所述,针对低C/N比高氨氮废水,3D-RBC不需要提供额外曝气,仅通过自身转盘转动复氧就可以满足脱氮对DO的需求,增加曝气,DO浓度增大不仅会降低TN的去除,而且会导致能耗和运行成本增加。

2.3 C/N比对组合工艺处理效果的影响

图4所示为不同C/N比下3D-RBC+BCO系统中污染物去除变化规律。由图中可以看出,当进水C/N比为1和3时,3D-RBC对NH4+-N和TN的去除率分别保持在68.7%~78.7%到54.6%~60.9%的区间,说明3D-RBC在高氨氮和低C/N比条件下对氨氮和总氮具有较高的去除效果。但是当C/N比增加到6时,3D-RBC对NH4+-N和TN的去除迅速下降到48.1%和41.9%。推测其原因,可能是在低C/N比条件下,碳源不足,耐高氨氮、寡营养的HN-AD菌在与其他微生物的竞争中占据优势;C/N比提高到6时,HN-AD菌的竞争优势逐渐丧失,导致脱氮效果急剧恶化。当进水C/N比从1提高到3再到6的过程中,除了TN的平均去除率有小幅的下降外,组合工艺对COD、NH4+-N一直保持高效的去除效果,出水水质均满足《污水综合排放标准》(GB 8978—1996)一级标准,这表明进水C/N比对BCO单元和组合工艺的影响较小。综上所述,组合工艺针对低C/N比沼液具有高效的脱氮表现,提高C/N比不仅影响3D-RBC单元对NH4+-N和TN的去除,同时也会增加碳源消耗,增加运行成本。

综上所述,在真实沼液条件下,采用HN-AD菌剂挂膜启动方法,仅用12和18 d就分别完成3D-RBC和BCO反应器的挂膜启动,同时组合工艺对COD、NH4+-N和TN的去除率分别稳定在94.8%、95.7%和80.1%,出水优于城镇污水厂排放一级B标准。在对3D-RBC反应器DO和C/N比的优化过程中,增设底曝后COD、NH4+-N和TN等指标的去除率分别降低了25.4%、15.4%和15.5%。

图3 增加底曝前后对组合工艺处理效果的影响

图4 不同C/N比下组合系统污染物变化及脱氮效率

2.4 不同生物组合工艺微生物群落结构影响分析

对增加底曝(R1)、取消底曝(R2)和改变C/N比为6(R3)、3(R4)、1(R5)不同运行参数下的生物膜样品进行高通量测序,分别获得56 277、44 848、61 521、50 891和61 723有效序列(见表2),将有效序列在97%的相似性类聚,5个样品的覆盖度(coverage)均在99%以上,意味着该检测结果能够反映生物膜样品中微生物的真实情况。同时对比ACE和Chao指数可以发现,增加底曝后3D-RBC中菌属的数量出现一定的程度的下降,而提高C/N比的过程中,3D-RBC中菌属的数量则呈现小幅下降然后快速上升的变化趋势。

表2 组合工艺3D-RBC单元中微生物多样性指数分析结果

不同生物样品在属水平上的群落结构分布如图5所示。增加底曝后,3D-RBC系统中属于HN-AD菌的陶厄氏菌属()[28]和代尔夫特菌属()[29]的相对丰度分别从没有增加底曝时的1.8%和1.5%降低到0.8% 和 0.2%,而亚硝化单胞菌属()[30](2.1%)和新鞘氨醇杆菌属()[31](1.2%)2种HN-AD菌在增加底曝后则直接从3D-RBC系统中消失。增设底曝后RBC内DO浓度由3~4 mg/L升高至7~8 mg/L,形成过曝气的状态。Sun和Ma等的研究表明,过高的DO浓度会导致亚硝酸的大量累计,亚硝酸盐的累计一方面会抑制HN-AD菌的生长,另一方面会严重影响好氧反硝化过程,从而导致TN去除下降[32-34]。这与本研究的结论较一致,增加底曝后,RBC反应器内以陶厄氏菌属、代尔夫特菌属、亚硝化单胞菌属和新鞘氨醇杆菌属为代表的异养硝化-好氧反硝化菌的丰度降低显著。同时,结合图3中增加底曝后3D-RBC对TN的去除率显著下降,进一步证实了HN-AD菌属种类和丰度的降低可能是导致3D-RBC脱氮效果下降主要原因的推测。

由图5可知,当C/N比为1时,系统中的HN-AD菌属仍然具有较高的相对丰度,主要包括盐单胞菌属()[35](3.1%)、嗜氢菌属()[36](2.9%)、假单胞菌属()[37](2.4%)和丛毛单胞菌属()[38-39](1.1%),其中为贫营养型菌[40],其他3种菌属要实现脱氮功能,则需要较高的C/N比[35-36,38],据此可以推测,菌属是保障3D-RBC在C/N比为1的寡营养条件下仍具有高效脱氮效果的关键脱氮菌;当C/N比为3时,3D-RBC系统中各类HN-AD菌属丰度均出现降低,但出现了一种新的、相对丰度高达53%的HN-AD菌属-不动杆菌()[41],且菌属同样具有贫营养生长特性[42],结合图4可以推测,C/N=3时废水中污染物去除效果较高的主要原因是菌属的优势化构建与富集提高了脱氮效果。当C/N为6时,系统中只存在(0.5%)和(1.1%)2种HN-AD菌属,且相对丰度都较低。 HN-AD菌属种类与丰度的大幅降低,可能导致3D-RBC系统脱氮效率的下降,这一推测与图4中结果保持一致,当C/N比提升到6时,3D-RBC对NH4+-N和TN的去除出现了明显的降低。

图5 组合工艺系统微生物群落结构菌群分布

3 结 论

1)真实沼液条件下,采用HN-AD复合菌剂挂膜的启动方式,3D-RBC和BCO反应器仅需12d和18d就可以成功实现挂膜启动,组合工艺对COD、NH4+-N和TN的去除率分别稳定在94.8%、95.7%和80.1%,出水优于城镇污水厂排放一级B标准。

2)提高3D-RBC的DO浓度不会增加组合工艺对COD、NH4+-N、TN的去除效率,反而增加了曝气能耗;组合工艺特别适用于低碳、高氮沼液的处理,提高C/N比反而会导致3D-RBC中TN去除率的下降,并且增加碳耗成本。

3)高通量测序结果表明,3D-RBC增加底曝后,微生物菌属的数量小幅下降,但是HN-AD菌的多样性和丰度下降明显,导致脱氮效果下降;在C/N=1和C/N=3时,假单胞菌属()和不动杆菌属()2种贫营养菌属相对丰度较高,当C/N增加到6时候,其丰度降低显著,脱氮效率变差,推测这两种菌属是组合工艺对低碳、高氮沼液具有高效脱氮效果的关键。

[1] 孙良媛,刘涛,张乐. 中国规模化畜禽养殖的现状及其对生态环境的影响[J]. 华南农业大学学报:社会科学版,2016,15(2):23-30. Sun Liangyuan, Liu Tao, Zhang Le. The pollution of scale livestock and poultry breeding and its influence on eco-environment[J]. South China Agricultural University (Social science edition), 2016, 15(2): 23-30. (in Chinese with English abstract)

[2] 仇焕广,井月,廖绍攀,等. 我国畜禽污染现状与治理政策的有效性分析[J]. 中国环境科学,2013,33(12):2268-2273. Qiu Huanguang, Jing Yue, Liao Shaopan, et al. Environmental pollution of livestock and the effectiveness of different management policies in China[J]. China Environmental Science, 2013, 33(12): 2268-2273. (in Chinese with English abstract)

[3] 张彩莹,王妍艳,王岩. 大狼把草对猪场废水中污染物的净化效果[J]. 农业工程学报,2011,27(4):264-269. Zhang Caiying, Wang Yanyan, Wang Yan. Removal effects ofon pollutants in swine wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 264-269. (in Chinese with English abstract)

[4] 秦嘉伟,信欣,鲁航,等. 连续流SNAD工艺处理猪场沼液启动过程中微生物种群演变及脱氮性能[J]. 环境科学,2020,41(5):2349-2357. Qin Jiawei, Xin Xin, Lu Hang, et al. Bacterial community shifts and nitrogen removal characteristics for a SNAD process treating Anaerobic Digester Liquor of Swine Wastewater (ADLSW) in a Continuous-Flow Biofilm Reactor (CFBR)[J]. Environmental Science, 2020, 41(5): 2349-2357. (in Chinese with English abstract)

[5] 宋成芳,单胜道,张妙仙,等. 畜禽养殖废弃物沼液的浓缩及其成分[J]. 农业工程学报,2011,27(12):256-259. Song Chengfang, Shan Shengdao, Zhang Miaoxian, et al. Concentration and determination of composition of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 256-259. (in Chinese with English abstract)

[6] 岳彩德,董红敏,张万钦,等. 陶瓷膜净化猪场沼液的效果试验[J]. 农业工程学报,2018,34(5):212-218. Yue Caide, Dong Hongmin, Zhang Wanqin, et al. Experiment on purified effect of ceramic membrane for digested slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 212-218. (in Chinese with English abstract)

[7] 刘庆玉,魏欢欢,郎咸明,等. 反渗透膜削减沼液氨氮工艺优化[J]. 农业工程学报,2016,32(8):192-198. Liu Qingyu, Wei Huanhuan, Lang Xianming, et al. Optimization of ammonia nitrogen removal from biogas slurry in osmosis technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 192-198. (in Chinese with English abstract)

[8] 田锁霞,于琼,孙振钧. 蚯蚓引入垂直流-水平潜流湿地混流系统处理沼液的效果[J]. 农业工程学报,2016,32(8):199-205. Tian Suoxia, Yu Qiong, Sun Zhenjun. Treatment efficiencies of biogas slurry by earthworm-constructed vertical flow and horizontal subsurface flow constructed wetlands system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 199-205. (in Chinese with English abstract)

[9] 邹梦圆,董红敏,朱志平,等. 惰性填料种类对猪场沼液氨吹脱效果的影响[J]. 农业工程学报,2018,34(23):186-192. Zou Mengyuan, Dong Hongmin, Zhu Zhiping, et al. Effect of different types of sluggishness packings on ammonia stripping of piggery biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 186-192. (in Chinese with English abstract)

[10] 宋成芳,单胜道,张妙仙,等. 畜禽养殖废弃物沼液的浓缩及其成分[J]. 农业工程学报,2011,27(12):256-259. Song Chengfang, Shan Shengdao, Zhang Miaoxian, et al. Concentration and determination of composition of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 256-259. (in Chinese with English abstract)

[11] Yang Xinping, Wang Shimei, Zhang Dewei, et al. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium,subtilis A1[J]. Bioresource Technology, 2011, 102(2): 854-862.

[12] Mohan T V, Nancharaiah Y V, Venugopalan V P, et al. Effect of C/N ratio on denitrification of high-strength nitrate wastewater in anoxic granular sludge sequencing batch reactors[J]. Ecological Engineering, 2016: 441-448.

[13] 隋倩雯. 氨吹脱与膜生物反应器组合工艺处理猪场厌氧消化液研究[D]. 北京:中国农业科学院,2014. Sui Qianwen. Combined of Ammonia Stripping and Membrane Bioreactor Processes for Anaerobically Digested Swine Wastewater Treatment[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract)

[14] 张培玉,曲洋,于德爽,等. 菌株qy37的异养硝化/好氧反硝化机制比较及氨氮加速降解特性研究[J]. 环境科学,2010,31(8):1819-1826. Zhang Peiyu, Qu Yang, Yu Deshuang, et al. Comparison of heterotrophic nitrification and aerobic denitrification system by strain qy37 and its accelerating removal characteristic of NH4+-N[J]. Environmental Science, 2010, 31(8): 1819-1826. (in Chinese with English abstract)

[15] 杨静丹,祝铭韩,刘琳,等. 异养硝化-好氧反硝化菌HY3-2的分离及脱氮特性[J]. 中国环境科学,2020,40(1):294-304. Yang Jingdan, Zhu Minghan, Liu Lin, et al. Isolation and denitrification characteristics of heterotrophic nitrification-aerobic denitrification bacterium HY3-2[J]. China Environmental Science, 2020, 40(1): 294-304. (in Chinese with English abstract)

[16] 袁建华,赵天涛,彭绪亚. 极端条件下异养硝化-好氧反硝化菌脱氮的研究进展[J]. 生物工程学报,2019,35(6):942-955. Yuan Jianhua, Zhao Tiantao, Peng Xuya. Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions[J]. Chinese Journal of Biotechnology, 2019, 35(6): 942-955. (in Chinese with English abstract)

[17] 杨墨,刘乾亮,吕东伟,等. 低温异养硝化-好氧反硝化菌筛选及其脱氮特性[J]. 中国给水排水,2019,35(23):100-104. Yang Mo, Liu Qianliang, Lv Dongwei, et al. Isolation of cold-resistant heterotrophic nitrification - aerobic denitrification strain and its nitrogen removal performance[J]. China Water & Wastewater, 2019, 35(23): 100-104. (in Chinese with English abstract)

[18] 张婷月,丁钰,黄民生. 异养硝化-好氧反硝化细菌的筛选及其脱氮性能研究[J]. 华东师范大学学报(自然科学版),2018(6):22-31,87. Zhang Tingyue, Ding Jue, Huang Minsheng. Screening of heterotrophic nitri cation-aerobic denitrifying bacteria and its nitrogen removal characteristics[J]. East China Normal University (Natural Science Edition), 2018(6): 22-31,87. (in Chinese with English abstract)

[19] 左薇. 一株好氧反硝化菌的筛选鉴定及其脱氮特性分析[D]. 哈尔滨:哈尔滨工业大学,2006. Zuo Wei. An Aerobic Denirifier Screened Identification and Denitrification Characteristic[D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese with English abstract)

[20] 苏俊峰. 异养型同步硝化反硝化脱氮技术及微生物特性研究[D]. 哈尔滨:哈尔滨工业大学,2007. Su Junfeng. The Study of Denitrifying Technology of Heterotrophic Simultaneous Nitrification and Denitrification and Microbial Character[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese with English abstract)

[21] 王佳乐. 高盐废水强化多路径耦合脱氮技术及机理研究[D]. 重庆:重庆大学,2018. Wang Jiale. The Multi-path Coupled Technologies and Mechanisms in Nitrogen Removal Process Treating Saline Wastewater[D]. Chongqing: Chongqing University, 2018. (in Chinese with English abstract)

[22] 李贵珍,赖其良,邵宗泽等. 异养硝化-好氧反硝化细菌的研究进展[J]. 生物资源,2018,40(5):419-429. Li Guizhen, Lai Qiliang, Shao Zongze, et al. Research progress of heterotrophic nitrification-aerobic denitrification bacteria[J]. Biotic Resources, 2018, 40(5): 419-429. (in Chinese with English abstract)

[23] 苏婉昀,高俊发,赵红梅. 异养硝化-好氧反硝化菌的研究进展[J]. 工业水处理,2013,33(12):1-5. Su Wanyun, Gao Junfa, Zhao Hongmei. Research progress in heterotrophic nitrification-aerobic denitrification bacteria[J]. Industrial Water Treatment, 2013, 33(12): 1-5. (in Chinese with English abstract)

[24] 刘向阳,张千,吴恒,等. HN-AD菌强化3D-RBC处理养猪废水及微生物特性研究[J]. 中国环境科学,2019,39(9):3848-3856. Liu Xiangyang, Zhang Qian, Wu Heng, et al. Study on treatment of raw swine wastewater by enhanced 3D-RBC with HN-AD bacteria and its microbial characteristics[J]. China Environmental Science, 2019, 39(9): 3848-3856. (in Chinese with English abstract)

[25] 刘新梅. 《水和废水监测分析方法》问题探讨[J]. 中国环境监测,1993 (1):63-64.

[26] 陈重军,张海芹,汪瑶琪,等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学,2016,37(7):2652-2658. Chen Chongjun, Zhang Haiqin, Wang Yaoqi, et al. Characteristics of microbial community in each compartment of ABR ANAMMOX reactor based on High-throughput sequencing[J]. Environmental Science, 2016, 37(7): 2652-2658. (in Chinese with English abstract)

[27] 刘向阳,张千,吴恒,等. HN-AD菌生物强化接触氧化工艺处理猪场沼液[J]. 环境科学,2019,40(5):2349-2356. Liu Xiangyang, Zhang Qian, Wu Heng, et al. Treatment of piggery biogas slurry by enhanced biological contact oxidation with HN-AD bacteria[J]. Environmental Science, 2019, 40(5): 2349-2356. (in Chinese with English abstract)

[28] 杨华,黄钧,赵永贵,等. 陶厄氏菌sp. strain TN9的鉴定及特性[J]. 应用与环境生物学报,2013,19(2):318-323. Yang Hua, Huang Jun, Zhao Yonggui, et al. Identification and characterization ofsP. Strainn TN9*[J]. Chinese Journal of Applied & Environmental Biology, 2013, 19(2): 318-323. (in Chinese with English abstract)

[29] 许涛,王国英,岳秀萍.sp. PDB3菌好氧反硝化脱氮特性[J]. 中国环境科学,2018,38(6):2321-2328. Xu Tao, Wang Guoying, Yue Xiuping. The nitrogen removal characteristics of aerobic denitrification bysp. PDB3[J]. China Environmental Science, 2018, 38(6): 2321-2328. (in Chinese with English abstract)

[30] 熊英,向斯,程凯. 一株高适应性Nitrosomonas eutropha CZ-4的脱氨特性[J]. 中国环境科学,2019,39(8):3365-3372. Xiong Ying, Xiang Si, Cheng Kai. Nitrogen removal characteristics of a highly adaptableCZ-4[J]. China Environmental Science, 2019, 39(8): 3365-3372. (in Chinese with English abstract)

[31] 崔志松,邵宗泽. 一株海洋新鞘氨醇杆菌phe-8 (sp. )的PAHs降解基因和降解特性[J]. 厦门大学学报:自然科学版,2006 (S1):257-261. Cui Zhisong, Shao Zongze. Characterization of a PAHs DegradingMarine Strainsp. Phe-8 and Its Degradative Genes[J]. Xiamen University (Natural Science Edition), 2006 (S1): 257-261. (in Chinese with English abstract)

[32] Sun Y, Li A, Zhang X, et al. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13[J]. Applied Microbiology and Biotechnology, 2015, 99(7): 3243-3248.

[33] Ma Fang, Sun Yilu, Li Ang, et al. Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification[J]. Bioresource Technology, 2015, 187: 30-36.

[34] Sun Y, Feng L, Li A, et al. Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13[J]. Bioresource Technology, 2017, 234: 264-272.

[35] 孙雪梅,李秋芬,张艳,等. 一株海水异养硝化-好氧反硝化菌系统发育及脱氮特性[J]. 微生物学报,2012,52(6):687-695. Sun Xuemei, Li Qiufen, Zhang Yan, et al. Phylogenetic development and denitrification characteristics of a heterotrophic nitrification-aerobic denitrification bacterium in seawater[J]. Acta Microbiologica Sinica, 2012, 52(6): 687-695. (in Chinese with English abstract)

[36] 孟建宇,李蘅,唐凯,等. 两株氢噬胞菌的萘降解特性分析[J]. 化工环保,2017,37(3):300-303. Meng Jianyu, Li Heng, Tang Kai, et al. Analysis on naphthalene degradation characteristics of twosp. strains[J]. Environmental Protection of Chemical Industry, 2017, 37(3): 300-303. (in Chinese with English abstract)

[37] Paranjape Kiran, Bédard Émilie, Whyte Lyle G, et al. Presence of legionella spp. in cooling towers: The role of microbial diversity, Pseudomonas, and continuous chlorine application[J]. Water Research, DOI: 10.1101/540302.

[38] Su Junfeng, Yang Shu, Huang Tinglin, et al. Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15[J]. Environmental Pollution, 2020, 32: 256.

[39] 王庆国,张怀玉,周丽烨,等. 酶菌剂对废水生化处理效果的影响[J]. 中国给水排水,2016,32(5):85-88. Wang Qingguo, Zhang Huaiyu, Zhou Liye, et al. Effect of mixture of enzyme and microbe on biochemical treatment of wastewater[J]. China Water & Wastewater, 2016, 32(5): 85-88. (in Chinese with English abstract)

[40] 周兰影,马秀兰,张晨东,等. 低温低碳氮比好氧反硝化菌的筛选及鉴定[J]. 科技导报,2014,32(11):33-37. Zhou Lanying, Ma Xiulan, Zhang Chendong, et al. Screening and identification of an aerobic denitrifying bacterium with low C/N ration at low temperatur[J]. Science & Technology Review, 2014, 32(11): 33-37. (in Chinese with English abstract)

[41] 姜岩,张晓华,杨颖,等. 基于约氏不动杆菌的萘生物降解特性[J]. 化工学报,2016,67(9):3981-3987. Jiang Yan, Zhang Xiaohua, Yang Ying, et al. Naphthalene biodegradation byjohnsonii[J]. CIESC Journal, 2016, 67(9): 3981-3987. (in Chinese with English abstract)

[42] 夏辉,梁运祥. 1株净水贫营养细菌的筛选及其低营养特性的初步研究[J]. 华中农业大学学报,2006(5):530-534. Xia Hui, Liang Yunxiang. Screening of 1 strain of purified water nutrient-poor bacteria and preliminary study of its low nutrient characteristics[J]. Journal of Huazhong Agricultural University, 2006(5): 530-534. (in Chinese with English abstract)

Treatment of pig biogas slurry wastewater by microbial inoculum 3D-RBC combined with BCO process

Liu Xiangyang, Zhang Qian※, Luo Wandong, Chen Xue, Zhang Zhengyi, Guo Qingsong, Zhao Tiantao

(,,400054,)

Discharge of aquaculture wastewater from large-scale pig farms has become one of the major pollution sources for agricultural non-point sources in China. After the treatment of anaerobic fermentation for aquaculture wastewater, most of the COD is removed, but the concentration of NH4+-N is still very high, leading to the production of biogas slurry with the low ratio of C/N and high strength of ammonia nitrogen. If the concentration of NH4+-N was high beyond the threshold of conventional denitrification microorganisms, the enrichment difficulty with the seriously unbalanced C/N ratio can occur, while, the low organic matter also affects the removal of total nitrogen. Therefore, it is highly demanding to explore a new biological treatment technology that suitable for this kind of biogas slurry, in order to ensure the sustainable development of industrial aquaculture in animal husbandry. In view of the water quality characteristics of oligotrophic and high ammonia nitrogen, a novel process was proposed to combine three-dimensional rotating biological contactor (3D-RBC) and biological contact oxidation (BCO) reactor using the oligotrophic heterotrophic nitrification-aerobic denitrification (HN-AD) mixed bacteria with high tolerance of ammonia nitrogen as microbial inoculants for the treatment of piggery biogas slurry wastewater.The removal efficiency of pollutants was also evaluated in the combination process under the condition of actual biogas slurry. An emphasis was put on the effects of concentration of dissolved oxygen (DO) and C/N ratio on the removal of pollutant during the treatment. A high-throughput sequencing technology was selected to analyze the change of microbial community structure in optimization process of DO and C/N ratio. The results showed that: (1) In the case of actual biogas slurry, the start-up of 3D-RBC and BCO reactors can be completed in 12d and 18d, respectively, when using the HN-AD mixed bacteria as microbial inoculants for the biofilm formation. The removal efficiency of COD, NH4+-N, and TN in the combined process were 94.8%, 95.7% and 80.1%, respectively, and the effluent water quality can reach the level of Class I-B according the national standard GB 18918-2002. (2) During the optimization of DO and C/N ratios in the 3D-RBC reactor, the removal rates of COD, NH4+-N, and TN were reduced by 25.4%, 15.4%, and 15.5%, respectively, particularly after the addition of the bottom exposure. There was no significantly increase in the removal efficiency of COD, NH4+-N, TN, and TP, whereas, the energy consumption of aeration increased in the combination process. The combined process can be especially suitable to treat the biogas slurry with the low C/N ratio and high concentration of nitrogen. The improved C/N ratio can lead to the decrease in the removal rate of TN , while, increase the cost of carbon in the treatment of 3D-RBC. (3) The biodiversity in the 3D-RBC disc biofilm decreased slightly after the addition of bottom exposure, but the variety and abundance of the dominant genus HN-AD decreased significantly, leading to a decrease in the removal efficiency of nitrogen. When C/N=1 and C/N=3,andhave relatively high abundance, whereas, its abundance decreased significantly while the nitrogen removal efficiency decreased, when C/N increased to 6. The oligotrophicand Pseudomonas bacteria can serve as the key materials for the efficient removal of nitrogen from actual biogas slurry in the 3D-RBC. It infers that the decrease of C/N ratio can significantly enhance its abundance, and thereby improve the nitrogen removal.

films; bacterias; high ammonia nitrogen; biological nitrogen removal process; piggery biogas slurry wastewater; microbial community structure

刘向阳,张千,罗万东,等. 菌剂挂膜3D-RBC联合BCO工艺处理养猪沼液废水[J]. 农业工程学报,2020,36(20):49-56.doi:10.11975/j.issn.1002-6819.2020.20.007 http://www.tcsae.org

Liu Xiangyang, Zhang Qian, Luo Wandong, et al. Treatment of pig biogas slurry wastewater by microbial inoculum 3D-RBC combined with BCO process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 49-56. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.007 http://www.tcsae.org

2020-05-09

2020-10-09

国家自然科学基金项目(No.51908099);重庆市社会事业与民生保障科技创新专项(No.cstc2018jscx-mszdX0005);重庆理工大学研究生创新项目(No.ycx20192073)

刘向阳,主要研究方向为生物膜反应器脱氮工艺。Email:liuxy@2017.cqut.edu.cn

张千,博士、副教授,主要研究方向为低碳源、高氨氮污水全好氧脱氮除碳新工艺理论与应用研究。Email:zhangqianswu2005@163.com

10.11975/j.issn.1002-6819.2020.20.007

X713

A

1002-6819(2020)-20-0049-08

猜你喜欢

硝化菌剂沼液
微藻处理后的沼液对水稻种子萌发与幼苗生长的影响
一种复合微生物菌剂对大白菜霜霉病的防效及促生作用
农用微生物菌剂在小白菜上的施用效果研究
污水处理厂反硝化深床滤池工艺应用分析
施用功能微生物菌剂对重度盐碱地向日葵生长及土壤微生物的影响
复合微生物菌剂在农业生产中的应用
提高同时硝化反硝化曝气生物滤池(NDN)硝化及单级生物脱氮效率的研究
浅谈污水中脱氮的途径
沼液喂猪有讲究
沼液在蔬菜上的应用及其注意事项