APP下载

鸭坦布苏病毒病的研究进展

2020-12-22黄允真孙敏华

广东农业科学 2020年11期
关键词:活疫苗宿主诱导

黄允真 ,孙敏华 ,廖 明

(1. 广东省农业科学院动物卫生研究所/广东省畜禽疫病防治研究重点实验室/农业农村部兽药与诊断学科群广东科学观测实验站,广东 广州 510640;2. 岭南现代农业科学与技术广东省实验室茂名分中心,广东 茂名 525000;3. 广东省农业科学院,广东 广州 510640)

2010年春季,我国江浙地区暴发了一种以蛋鸭产蛋率急速下降为主要特点的新发动物传染性疾病,依据其病变特点,该病被称为鸭出血性卵巢炎(Duck Hemorrhagic Ovaritis, DHO),随后经系统研究,确定其病原为鸭坦布苏病毒(Duck Tembusu Virus, DTMUV)。DTMUV属于黄病毒科黄病毒属蚊媒病毒恩塔亚病毒群。黄病毒是一类重要的人兽共患病原,同属的病原包括西尼罗病毒(West Nile virus,WNV)、登革热病毒(Dengue virus,DENV)、黄热病毒(Yellow fever virus, YFV)、寨卡病毒(Zika virus)、日本脑炎病毒(Japanese encephalitis virus, JEV)等,每年可造成数百万人感染。蚊媒传播是许多黄病毒的主要传播方式,而且在自然界中许多鸟类是多种黄病毒(如WNV)的扩增宿主。目前,尚未有报道表明DTMUV对人表现出致病性,但已有研究表明DTMUV可以感染人。该病毒最早于1955年在马来西亚的库蚊样品中被分离鉴定[1],但随后鲜有对该病毒的报道。2000年,马来西亚发现TMUV引起的以脑炎和发育迟缓为主要特征的传染病。直到2010年,我国部分地区鸭群暴发了坦布苏病毒病,随后迅速扩散至全国,给我国养鸭业造成了巨大的经济损失。之后东南亚地区相继暴发坦布苏病毒病。鸭坦布苏病毒病在我国突然暴发的原因目前尚未清楚。目前已发现的TMUV毒株根据其基因组特点可分为2个谱系,分别为TMUV和DTMUV。TMUV谱系的毒株主要分离自蚊虫。DTMUV流行至今已进化出3个群,其中1群主要在马来西亚及泰国等东南亚地区流行,2.1亚群主要流行于中国和泰国,2.2亚群和3群主要在中国流行[2]。坦布苏病毒病现已成为严重危害我国养鸭业的主要疫病之一,加之其为黄病毒属病毒,具有潜在的人兽共患风险,因此对DTMUV进行深入研究具有重要意义。本文就近年来DTMUV的病原学、流行特点、病毒感染引起的天然免疫反应,以及疫苗研制等方面的研究进展进行综述,以期为DTMUV的深入研究及该病的综合防控提供借鉴。

1 病原学

DTMUV粒子呈球形,直径约45 nm,成熟的病毒粒子外层具有含糖蛋白纤突的磷脂双分子层囊膜。DTMUV的基因组为单股正链RNA,长度约为10 991个核苷酸,由5'非编码区(UTR)、一个开放性阅读框(ORF)和3'UTR组成。5'UTR长度为94~96个核苷酸,具有1型cap结构;3'UTR长度为618~619个核苷酸,无poly A结构。黄病毒通常以cap依赖方式进行翻译,研究表明,DTMUV可以通过不依赖cap方式在各类易感细胞内翻译,与依赖内部核糖体进入位点(Internal ribosome entry site,IRES)介导的翻译机制不同,其依赖于顺式作用的5'UTR和3'UTR[3]。5'UTR和3'UTR呈高度结构化,与病毒蛋白翻译及基因组复制相关。DTMUV的ORF长度为10 278个核苷酸,编码产生一个长为3 425个氨基酸的多肽,在宿主和病毒蛋白酶的作用下水解为3个结构蛋白(C、prM、E)和7个非结构蛋白(NS1、NS2A、NS2B、NS3、NS4A、NS4B、NS5)。C蛋白为核衣壳蛋白,能与病毒核酸组装成核衣壳颗粒,可以诱导机体产生中和抗体[4]。此外,黄病毒C蛋白还与病毒的复制能力、致病性有关[5-6]。黄病毒prM蛋白在病毒的组装、释放中发挥重要作用。prM蛋白是M蛋白的前体,在未成熟无感染性的病毒粒子上,prM的螺旋区与E蛋白的结构域Ⅱ区相互作用形成异源二聚体,然后在蛋白酶的作用下水解为M蛋白,形成成熟的病毒粒子[7]。E蛋白是病毒的重要毒力蛋白,也是重要的免疫原性蛋白,能诱导产生中和抗体[8]。研究表明,E蛋白在介导病毒与细胞膜融合、病毒的组织嗜性、神经毒性及致病力等方面有着重要影响[9-11]。NS1属于分泌型糖蛋白,能诱导产生非中和性抗体,与病毒的复制、组装和感染相关[12-13]。黄病毒NS2A和NS2B相互作用形成蛋白酶复合体,主要功能是对病毒多聚蛋白进行剪切,此外还与病毒核酸的合成有关[14]。同时,DTMUV的NS2A/2B蛋白还可抑制RIG-1、MDA5-、MAVS-和STING指导的IFN-β转录[15]。NS3与NS2B和NS5相互作用,发挥RNA解旋酶和RNA聚合酶的作用[16]。酵母双杂交试验表明,NS3的HELICc结构域可以与PRDX1结合,调节p38 /丝裂原激活的蛋白激酶途径,抑制细胞凋亡,可能有助于DTMUV逃避宿主免疫反应[17]。NS4A和NS4B在病毒复制和病毒-宿主相互作用中起多种作用,如诱导内质网重排、调节病毒复制复合物形成、调节NS3解旋酶活性和诱导宿主细胞自噬等[18]。NS5为黄病毒中最保守的非结构蛋白,含有甲基转移酶和RNA依赖的RNA聚合酶活性,负责病毒RNA复制和RNA 5'端加cap[19]。

DTMUV可以在多种来源的细胞上传代培养,如禽源的DEF、CEF、DF-1细胞,哺乳动物源的BHK-21、Vero、HeLa细胞,蚊源的C6/36细胞等。病毒的致细胞病变效应(CPE)取决于病毒毒株、细胞种类和培养条件。经尿囊腔接种DTMUV的鸡胚或鸭胚会在2~6 d后出现死亡[20-22]。与多数有囊膜病毒一样,DTMUV对乙醚、氯仿和过氧胆酸盐敏感,不耐酸碱,不耐热,56 ℃ 15 min即可灭活。

2 流行特点

2.1 宿主范围

DTMUV具有广泛的天然宿主,包括蚊子、鸭、鸡、鹅、鸽子、麻雀等[23]。DTMUV在流行之初主要感染蛋鸭和种鸭,鸭感染后主要表现为采食量下降、拉绿色稀粪、产蛋量急剧下降等临床特征。蛋鸭一般在感染后第2天开始表现出采食量下降,随后在5~6 d内产蛋率可下降至10%以下,部分病鸭伴随有神经症状,表现为双脚麻痹、摇头晃脑。该病病程约数周,蛋鸭一般可耐过,但耐过蛋鸭的产蛋性能通常无法恢复到正常水平[24]。肉鸭通常在15~35日龄发病,同样表现为采食量下降、拉绿色稀粪、双脚麻痹、步态不稳,通常感染后4~7 d为死亡高峰,耐过肉鸭通常表现为发育不良。剖检病死蛋鸭可见卵巢出血性坏死、萎缩,卵泡出血、萎缩、破裂;公鸭睾丸、输精管萎缩;部分病鸭肝脏发黄、肿大,脾脏肿大甚至破裂,也有部分鸭脾脏萎缩,心肌苍白,有时可见条索状坏死,多脏器浆膜表面可见红染小体[24]。

种鹅感染DTMUV的潜伏期一般为3~5 d,主要表现为采食量下降,体温升高,产蛋量急剧下降60%~80%,后期神经症状明显,表现为共济失调,头颈抽搐,翅膀麻痹,步态不稳甚至瘫痪,死淘率为5%~10%,种鹅耐过后产蛋性能一般无法恢复到正常水平[25]。感染DTMUV的蛋鸡表现出产蛋量下降,但通常不会死亡,临床未发现大规模流行[26]。此外,研究人员还在发病鸭场周围捕获的麻雀肝脏及泄殖腔中也检测到DTMUV[27]。

DTMUV除了有广泛的禽类宿主外,还可感染哺乳动物。有研究人员将DTMUV通过颅内接种感染小鼠,感染后的小鼠出现严重神经症状甚至死亡[28]。此外,有研究人员还在鸭场员工的血清中检测到DTMUV中和抗体,表明DTMUV可在鸭-人之间传播[29],虽未表现出致病性,但仍应引起足够重视。

2.2 传播途径

大多数黄病毒属病毒(如登革热病毒、乙型脑炎病毒)主要通过蚊、蜱等吸血性节肢动物进行传播。但DTMUV病的暴发没有明显季节性,即使在蚊虫不活跃的秋冬季也时常发生,说明虫媒传播并不是DTMUV的主要传播途径[30]。有研究人员在山东田间的库蚊中分离到1株TMUV,系统发育分析显示该毒株与DTMUV同源性较高[20]。此外,已证实DTMUV可以通过库蚊感染鸡,但并不是所有种类的库蚊都具备传播性[31]。目前,虫媒在DTMUV传播中的作用有待进一步明确。

水平传播是DTMUV在鸭群或鹅群中传播的主要途径,患病鸭可通过排泄物或呼出的气溶胶传播病毒[32-33]。研究显示,DTMUV的E蛋白在病毒的水平传播中起重要作用,而E蛋白第154位氨基酸糖基化的缺失可使病毒丧失水平传播能力[11]。野生鸟类在DTMUV的跨地域传播中可能起重要作用。事实上,因为鸟类特殊的生物学和生态学特性,其作为扩增宿主在许多黄病毒的传播中起着重要作用,例如WNV、JEV等在传播至人类之前就已经在鸟类宿主中得到扩增[34]。基于对麻雀感染DTMUV的研究,我们推测携带DTMUV的野生鸟类在迁徙过程中通过粪-口传播途径将病毒传播至各处。但DTMUV具体在鸭群间如何传播还有待进一步研究。

3 DTMUV感染的天然免疫反应研究

宿主的天然免疫反应在早期抵御病毒感染中发挥重要作用。模式识别受体(PRRs)存在于细胞的细胞膜、细胞质及内体中,包括Toll样受体(TLR)、RIG-I样受体(RLR)、NOD样受体(NLR)、C型凝集素受体(CLR)和AIM2样受体(ALR)等。它们能够识别病原相关分子模式(PAMPs),激活免疫信号通路,诱导产生IFN-I和炎性细胞因子等,进而诱导多种干扰素刺激基因(ISGs)的表达从而发挥抗病毒作用。

3.1 PRRs介导的天然免疫反应

RLRs包 括 MDA5、LGP2和 RIG-I。RLRs存在于细胞质中,可识别RNA病毒的复制中间产物,如dsRNA或5'端三磷酸化RNA,随后激活MAVS触发下游信号传导,诱导产生IFN-I和炎性细胞因子的表达[35]。而其中LGP2无法自主传导信号,在RIG-I介导的通路中起调节作用。值得注意的是,LGP2起初被认为在通路中起负反馈调节作用,但越来越多研究表明,LGP2可在RLR信号传导中起正反馈调节作用[36]。目前已鉴定的鸭源TLR有5种,为TLR2、TLR3、TLR4、TLR5和TLR7。其中TLR2、TLR4、TLR5主要位于细胞膜上,识别细菌、真菌等的PAMPs,TLR3识别dsRNA,TLR7识别ssRNA。激活的TRL2、TRL7募集MyD88启动MyD88依赖的信号通路,进而激活IRF-1诱导产生IFN-I;TLR3通过募集TRIF启动TRIF依赖的信号通路,从而激活NF-κB和IRF7,诱导产生IFN-I和炎性细胞因子的表达。

DTMUV感染1日龄樱桃谷鸭,在感染后24、48、72 h分别分析脑和脾脏中TRL3转录水平的变化,结果显示,脑组织中TRL3转录水平均上调,并在48 h达到高峰(13.62倍),RIG-I和MDA5分别在感染后48、72 h达到峰值(分别为4.13倍和20.60倍);脾脏中TRL3转录水平在感染后24、48、72 h分别上调18.34、1.57、0.81倍,RIG-I和MDA5也分别在感染后48、72 h达到峰值(分别为13.62倍和18.77倍)。这表明RIG-I、MDA5、TLR3介导的通路在不同的感染时期发挥着协同作用[37]。体外感染研究也表明,DTMUV可上调CEF细胞或293T细胞中的MDA5、RIG-I和TLR3表达,从而诱导IFN-β、IL-28A/B、IL-29的表达。同时,一些关键的ISGs表达水平也显著提高。而敲低MDA5或TLR3的细胞感染DTMUV后,IFN-β、IL-28A/B和IL-29的转录水平对比正常细胞显著降低[38]。同样,过表达MAVS可有效抑制DTMUV的复制[39]。对感染DTMUV母鸭的卵泡进行定量蛋白质组学分析结果也显示,RLR、TLR通路参与了抗DTMUV感染过程[40]。此外,Zhang等[41]对感染DTMUV的雏鸭脑组织进行转录组分析,结果显示,LGP2的转录水平在感染后12、24、48 h均上调,而MDA5、TLR2和TLR3转录水平仅在感染后24 h上调,RIG-I的转录水平没有显著变化,其中LGP2上调倍率最高。这表明了LGP2在抗DTMUV感染中可能起重要作用。LGP2在MDA5介导的抗鸭肠炎病毒(DEV)感染中起到双向调节作用[42],因此LGP2在抗DTMUV感染中起何种作用尚无定论,有待进一步深入研究。值得注意的是,Zhang等[41]的研究中,病毒感染并未改变鸭脑组织中RIG-I的转录水平,这与其他已发表的研究结果存在差异,可能与鸭品种和毒株有关,其内在机制有待进一步研究。除了RLR和TLR介导的信号通路,NLR、CLR、HMGB、DDX3X 等介导的信号通路同样参与了DTMUV的感染过程[41,43-45],但具体调控机制仍有待进一步确认。

3.2 ISGs抗DTMUV感染的研究

Zhang等[41]在对感染DT M UV的雏鸭脑组织转录组分析时发现,至少有22个ISGs存在转录 上 调, 其 中 IFIT5、Mx、OASL、VIPERIN和ZC3HAV1已被证实在哺乳动物细胞中发挥抗病毒作用[46]。而IFIT5、OASL、VIPERIN转录水平至少在感染后12、24、48 h其中一个时间点上调了200倍以上。IFIT5是一种干扰素诱导蛋白,过表达IFIT5的细胞在感染后24 h,DTMUV滴度显著降低,但感染后48 h的病毒滴度显著增加,而敲低IFIT5则得到相反的结果。进一步研究发现,过表达IFIT5可显著抑制NF-κB和IRF7以及下游IFN诱导干扰素刺激的反应元件(ISRE)启动子的激活,同时抗病毒蛋白Mx的转录水平明显下调[47]。Mx是一种抗粘液病毒蛋白,敲低或过表达该蛋白影响DTMUV的复制[48]。OASL蛋白属于OAS蛋白家族,在许多病毒感染过程中显示出广泛的抗病毒能力[49]。有研究克隆了樱桃谷鸭的OASL蛋白,体外研究表明,在DF-1细胞中鸭OASL过表达会轻微抑制DTMUV复制,而敲低鸭OASL会增加细胞中DTMUV复制[50]。VIPERIN是一种自由基S-腺苷甲硫氨酸(SAM)酶,在抗病毒反应中发挥多方面作用[51]。鸭VIPERIN已被证实可抑制BHK-21细胞和DEF细胞中DTMUV的出芽[52-53]。IFITM1和IFITM3的过表达也能抑制DF-1细胞中DTMUV的复制[54]。此外,转录组分析还发现多种ISGs参与了DTMUV感染过程,其中一些基因已被证实在其他黄病毒感染中发挥着重要的抗病毒作用[43,55],但是这些ISGs在抗DTMUV中的具体作用还有待进一步研究。

3.3 免疫逃逸

尽管DTMUV感染可激活PRRs介导的免疫通路,但在一些感染研究中,DTMUV可以分别在转录和翻译水平上抑制IFN-I的表达[56]。DTMUV感染DEF细胞会下调miR-148a-5p的产生,从而上调SOCS1的表达,进而抑制IFN-I的产生并促进病毒复制[57]。同时还会上调miR-221-3p的产生,导致SOCS5表达下调,抑制IFN-β的表达从而促进病毒复制[58]。自噬也是黄病毒逃逸宿主免疫反应的重要途径,DTMUV感染鸭可引起各组织中的细胞自噬,使用自噬抑制剂可抑制DTMUV复制并减轻DTMUV引起的病理症状,而自噬诱导剂的治疗则产生相反作用。同时,自噬还会影响PRRs、IFN-I及其他细胞因子的表达。表明自噬促进了DTMUV复制,加剧了病理症状的发展,并可能抑制宿主体内的天然免疫应答[59]。以DEF细胞为模型,发现DTMUV感染可以增加LC3-II的表达,而多聚泛素结合蛋白螯合体1(p62)表达下调,证实了DEF细胞中发生了完全自噬,并且自噬抑制NF-κB和IRF7的激活,增强了DTMUV复制[60]。DTMUV利用多种机制拮抗宿主细胞机制以促进复制,病毒复制依赖于宿主内质网(ER),并诱导产生ER应激,从而导致细胞未折叠蛋白应答(UPR)的激活。已有研究表明,黄病毒可通过UPR减轻由病毒蛋白积累引起的ER应激,并使ER扩增,避免细胞凋亡,从而有利于病毒复制[61]。

4 DTMUV疫苗研制

4.1 弱毒疫苗

DTMUV可在多种细胞及胚体上传代培养,因此该病毒的致弱手段多种多样。Li等[62]将临床分离株FX2010在CEF细胞上连续传代180代,获得FX2010-180P弱毒株,研究证明,该弱毒株免疫原性优良,安全性可靠,目前已开发为成熟的商品化疫苗,并在生产中取得了良好效果[62]。此外,研究人员还在鸡胚、鸭胚、DF-1、BHK-21等生物材料上成功获得了多株免疫原性良好、安全性高的减毒疫苗候选毒株[63-65]。目前,已经培育多株候选疫苗株,而如何在保证免疫原性和安全性的基础上提高弱毒株的效价、降低生产成本是后续弱毒疫苗研究的重点。

4.2 灭活疫苗

相较于弱毒疫苗,灭活疫苗在安全性上更有保障。目前商品化的DTMUV灭活疫苗有HB株灭活疫苗,并且同样广泛应用于临床生产中[66]。但灭活疫苗免疫原性低于弱毒疫苗,往往需要多次免疫才能达到令人满意的效果。研究人员用β-丙内酯作为灭活剂制备DTMUV灭活疫苗,发现相比甲醛灭活,该疫苗的免疫效力更高[67]。佐剂的使用是增强疫苗免疫效力的重要手段,例如将灭活疫苗与CpG ODNs佐剂联用,免疫保护试验结果表明,CpG ODNs佐剂可显著提高机体血清血凝抑制(HI)抗体滴度、DTMUV抗体的阳性率、血清细胞因子浓度和保护效力[68]。此外,张聪等[69]评估了重组融合肽Tα1-BP5对DTMUV灭活疫苗的免疫增强作用,结果表明,rTα1-BP5能显著增强机体的细胞和体液免疫应答水平。虽然佐剂的使用可以有效提高DTMUV灭活疫苗的免疫效力,但也意味着疫苗成本增加,在实际临床使用中难以推广。因此,灭活疫苗的研究应以选育免疫原性强、培养效价高的毒株为主。

4.3 基因工程疫苗

在DTMUV疫苗研究中,DNA疫苗是研究的一个重要方向。将DTMUV的prM/E基因克隆至pVAX1载体,同时在载体中引入用以提高免疫效力的CpG基序,构建重组质粒pVAX1-prM/E-CpG。免疫保护试验结果表明,pVAX1-prM/E-CpG可有效诱导机体产生体液免疫和细胞免疫,攻毒保护率可达100%[70]。有研究将DTMUV的C基因克隆至pVAX1载体,构建重组质粒pVAX1-C,经口服免疫后,可诱导机体产生体液和细胞免疫反应,且能有效保护机体免受强毒攻击;进一步利用沙门氏菌SL7207株为载体口服递送pVAX1-C,同样可为机体提供良好的免疫保护,该方法经济有效,具有大规模临床应用前景[4]。

嵌合疫苗是一种通过改造病原体并构建表达多种病原抗原的载体而制备成的疫苗。广东省农业科学院动物卫生研究所以新城疫病毒(NDV)GM株为载体构建表达DTMUVprM/E基因的嵌合病毒aGM/prM+E,动物免疫试验结果表明,aGM/prM+E能针对NDV和DTMUV强毒的攻击提供有效保护[71]。以鸭肠炎病毒(D EV)为载体,利用CRISPR/Cas9构建同时表达H5N1禽流感病毒(AIV)HA基因和DTMUVprM/E基因的重组DEV(C-KCE-HA/PrM-E),动物免疫试验结果表明,单剂量的C-KCE-HA/PrM-E即可使鸭抵抗H5N1、DTMUV和DEV攻击[72]。此外,该单位还利用杆状病毒表达系统,设计并制备了表面展示DTMUV E蛋白和H3N2 HA2蛋白的重组嵌合AIV VLPs(VLPs E-HA),试验证实其具有良好的免疫原性[73]。腺病毒载体是目前应用最广泛的疫苗载体之一,研究人员构建了表达DTMUV E蛋白的重组腺病毒rAd-E,免疫攻毒试验显示,rAd-E虽不能为鸭提供100%的免疫保护,但存活率高于对照组,这可能与免疫次数和剂量有关[74]。不同种类的疫苗联合使用有助于免疫效果的提升,利用表达prM-E或E的减毒沙门活疫苗和重组腺病毒载体疫苗进行异源初免—加强免疫,其免疫效果强于同源初免—加强免疫[75]。

此外,亚单位疫苗也是DTMUV疫苗研究的热点。E蛋白是DTMUV的主要抗原蛋白,DTMUV亚单位疫苗的研究也主要围绕E蛋白展开。目前研究已证实,E蛋白结构域Ⅰ、Ⅱ和Ⅲ均能有效诱导小鼠产生 DTMUV 中和抗体[76-77]。Li等[78]用杆状病毒表达系统表达截短的E蛋白,免疫攻毒试验证明,截短的E蛋白能为鸭提供100%的免疫保护。为提高亚单位疫苗的免疫原性,研究人员将原核表达并纯化的E蛋白与脂质体混合制备成亚单位疫苗,免疫试验结果表明,该亚单位疫苗能诱导产生更高水平的特异性抗体[79]。此外,目前已鉴定出了多个E蛋白B细胞表位,并证实了这些表位具有良好的免疫原性,为表位疫苗的研发提供基础[80]。尽管DTMUV亚单位疫苗的研究取得了一定进展,但免疫原性和生产成本依然制约着DTMUV亚单位疫苗的临床使用。

5 展望

鸭坦布苏病毒病自暴发以来,对我国及东南亚地区养鸭业造成了巨大的经济损失。该病的防控以预防为主,目前商品化的疫苗包括WF100株弱毒疫苗、FX2010-180P株弱毒疫苗、HB株灭活疫苗。其中弱毒疫苗的安全性一直备受关注,但目前临床使用的商品弱毒疫苗还未发现有明显副作用,也没有出现毒力返强现象。与弱毒疫苗相比,灭活疫苗安全性上更加可靠,但存在免疫程序繁琐、保护率稍低等缺点。因此更加高效、安全、廉价的DTMUV疫苗的研发是今后疫苗研究工作的重点。目前,对DTMUV感染后宿主体内免疫反应分子机制的研究还不够深入。随着鸭全基因组测序的完成以及免疫相关基因注释的完善,今后可联合多组学分析和分子生物学手段,深入研究DTMUV与宿主的互作,阐明疾病的发生过程与免疫反应机理,为靶向治疗药物开发及新型疫苗的研制提供理论基础。

猜你喜欢

活疫苗宿主诱导
隧道智能逃生诱导系统
不同诱导系对不同基因型玉米材料的诱导率评价
姜黄素抑制骨肉瘤细胞增殖、迁移和侵袭并诱导凋亡的作用研究
新冠病毒灭活疫苗诞生记
愤怒诱导大鼠肝损伤中内质网应激相关蛋白的表达
龟鳖类不可能是新冠病毒的中间宿主
什么是减毒活疫苗
Pattern of acute poisoning in Jimma University Specialized Hospital, South West Ethiopia
抓住自然宿主
绦虫大战,争夺宿主控制权