T91 金属管道表面特性对LIBS 测量的影响
2020-12-08
华南理工大学 电力学院,广东 广州 510640
随着现代社会的不断发展,社会的用电需求也在不断提高,越来越多的高性能发电机组被投入运行来满足社会的用电需求,这也导致了火电厂的安全运行问题越发突出。锅炉是火电厂中的重要部件,其中过热器管、再热器管、水冷壁管和省煤器管等高温承压管道是锅炉内部的主要组件[1]。统计结果表示,锅炉的高温承压管的爆漏事件占火电厂机组非计划停运事件的50%左右[2]。所以,能够准确预测锅炉内高温高压管道的失效情况,对保证火电厂的安全运行具有重大的现实意义。
激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)是利用脉冲激光作用于样品表面,激发包含光谱信息的等离子体,通过光谱分析以实现对样品的定性和定量分析,是新型的激光光谱无损、快速检测技术[3]。姚顺春等[4]研究了不同金属组织和不同球化程度的锅炉受热面材料样品在脉冲激光作用下形成的等离子体特性,通过分析谱线强度、等离子体温度以及激光烧蚀体积等激光等离子体特性,得到了不同失效状态的样品与等离子体特性的对应关系,为LIBS 技术应用于火电厂的高温承压材料的失效预测提供了理论基础。
支持向量机(SVM)是机器学习中一种重要的分类算法,韦丽萍等[5]将激光诱导击穿光谱技术应用于燃煤热值的定量分析,选择了44 种不同热值含量的煤样,提出了基于k折交叉验证参数优化支持向量机算法,取得了良好的分析精确度和准确度。陆盛资等[6]将激光诱导击穿光谱技术应用到不同老化等级的T91 金属样品的分类中,分析对比了不同老化等级样品的等离子体光谱特性,利用不同光谱变量集建立了SVM 金属受热面老化等级预测模型。
本文在已有研究基础上,将激光诱导击穿光谱应用到火电厂高温承压的实际管道失效检测中,选择不同老化等级的T91 钢样品作为SVM 老化等级预测模型的训练集,对来自火电厂的2 种不同老化等级的T91 钢管道的表面采用打磨与未处理2 种处理方法[7],研究实际运行管道表面特性对于激光光谱的影响和将LIBS 技术直接应用于工程实际的可行性。
1 实验系统与样品
1.1 实验系统
本实验使用的实验设备为LIBS 台式硬件集成一体机,该设备为美国Applied Spectra 公司的J200 激光诱导击穿光谱分析设备,图1 为LIBS 系统简要原理图。
图1 实验系统示意
J200LIBS 一体机使用Nd:YAG 调Q 脉冲激光器作为激光光源,其波长为266 nm,脉冲激光宽度为4 ns。该一体机拥有自动对焦系统,可以通过移动三维电动平移台来控制样品表面距离激光聚焦透镜的距离,保持聚焦激光在样品表面上的焦深为恒定。一体机光谱仪的最小门宽为1.1 ms,波长覆盖范围为185~1 045 nm,分辨率为0.05 nm。本次实验的激光能量为4.3 mJ,激光脉冲频率为3 Hz。脉冲激光与光谱仪之间的延迟时间设置为0.5 μs。
1.2 样品
本实验选取了老化等级为1~5 的12 个T91钢样品,样品标签与老化等级如表1 所示。
表1 样品的老化等级
这8 个训练集样品,包括3 个电厂真实运行后的镶嵌打磨管样,以及5 个人工制备的高温时效试样。在Li 的研究中[8],详细介绍了获取这些不同老化等级T91 钢人工试样的热处理过程,这里仅作简要叙述。为了得到不同老化等级的T91 试样,参考标准GB/T4338-2006[9],将由日本住友金属公司制作的T91 原管切割处理,然后将钢带在700 ℃、2 500 N,675 ℃、3 500 N,650 ℃、4 500 N,600 ℃、7 500 N 的加热温度和机械负荷的不同组合下进行处理。这样,得到不同老化状态的钢材样品。对不同老化状态的T91 钢材进行金相检验。根据标准DL/T 884-2004[10],将所有样品定性分为5 个老化等级。对每个人工制备样品表面的100 个不同位置进行100 次激光脉冲烧蚀,每个位置获取12 800 幅原始的光谱。
同时,实验选取了来自2 根分别取自某火电厂锅炉高温过热器与高温再热器的T91 钢换热管,作为被预测的样品,如图2 所示。参考标准DL/T 884-2004,对钢材依次进行取样、镶嵌制样、粗磨、细磨、抛光、浸蚀、观察拍照,得到其老化等级分别为1、3。对表面未做任何处理的原始管道样品的部分表面进行手工稍作打磨至出现金属光泽,从而得到老化等级为1 和3 的打磨样品与未处理样品,如图3 所示。激光脉冲对4 个样品表面的100 个不同位置分别进行200 次烧蚀。
图2 高温过热器T91 钢管与高温再热器T91 钢管
图3 高温过热器T91 钢管与高温再热器T91 钢管的打磨样品与未处理样品
图3 中,其上方区域为未处理部分,下方出现金属光泽区域为打磨部分。
2 结果与讨论
2.1 光谱特性
T91 实际管道具有代表性的波长范围为185~700 nm 的光谱数据平均后获得如图4 所示光谱图。可以看到样品基体元素(Fe)和合金元素(Cr、Mn 和Mo)的大量特征谱线都能被很好地在光谱图中被探测和分辨。
图4 样品具有代表性的光谱
在一定条件下,脉冲激光烧蚀不同老化等级的金属样品的差异可以通过样品间的某些代表性元素的平均谱线强度的差异来体现。分为5 种老化等级的10 个样品的代表性元素的平均谱线强度变化如图5 所示。其中,1~10 样品编号的大小随老化等级的增大而增大。5 个人工时效试样按老化等级1~5 对应样品编号为1、4、6、8、9;3 个实际管道镶嵌试样按老化等级1、2、5 对应样品编号为2、5、10;2 个打磨实际管道试样按老化等级1、3 对应样品编号为3、7。观察图5 中平均谱线强度与老化等级的关系,发现这些基体元素的谱线强度与老化等级存在较好的正相关性。但并不能直接利用这种正相关性预测样品的老化等级,因为光谱信息中包含了大量的干扰信息,需要对信息进行筛选和处理才可能得到理想的预测结果。
图5 谱线强度与金属老化等级之间的关联性
T91 实际管道随着激光脉冲数的增加,打磨样品与未处理样品的代表元素谱线强度的变化趋势如图6 所示,可以发现稍作打磨后的实际运行管道的谱线强度的波动较小,比较稳定。这与之前实验结果一致[6,11]。而未打磨处理的实际管道的谱线强度有明显的变化,特别是在前100 激光脉冲段内有较大的变化,且与稍作打磨的实际管道样品有较大差别,而在100~200 的激光脉冲段,未打磨处理的样品与打磨样品的谱线强度与变化趋于一致。可能的原因是在前100 脉冲段,实际管道表面特性对激光脉冲的烧蚀造成了影响,导致了与打磨的样品出现了谱线强度上的差别[12]。在100 次激光脉冲烧蚀后,实际管道表面的氧化层被击穿,激光作用于管道真实表面,导致谱线强度与打磨后的趋于统一。由此,选取未打磨的实际管道的100~200 次激光脉冲的光谱数据,作为有效的光谱数据,在老化等级模型中进行预测。
图6 随着激光脉冲数的增加,打磨样品与未处理样品的代表元素谱线强度的变化趋势
2.2 SVM 老化等级预测模型结果
支持向量机(SVM)是机器学习中一种重要的分类算法,由Corte 等[13]于1995 年首先提出,在面对小样本、非线性及高维的分类问题时有明显优势。SVM 核函数的选择和核函数参数的设置对其分类准确率有很大影响。考虑到在线分析对分析速度的要求,而且LIBS 光谱数据属于高维数据,本文的核函数选择了线性核函数[14]。另外,本文选择了互信息这一特征选择方法对光谱数据进行降维[15−17]。本文的光谱数据处理算法均通过使用Scikit-learn[18]工具包编写的Python 语言脚本实现。
本文将8 个样品作为训练集样品,选取了第30~100 次的脉冲光谱数据,平均后作为训练集的样品输入到SVM 模型[19]。为了估计与提高SVM模型的性能,对训练集进行交叉验证[20−21]。将来自老化等级分别为1、3 的电厂实际运行管道的4 个样品作为预测样品,选取了第100~200 次的脉冲光谱数据,平均后作为预测集的样品输入到SVM 模型,结果列于表2。
表2 SVM 老化等级模型的交叉验证与预测结果
由表2 可知,由3 个电厂真实运行后的管样,以及5 个人工制备的高温时效试样组成的老化等级模型,在5 折交叉验证的表现中较好,准确率达到0.922 5,说明老化等级模型具有较好的预测能力。预测老化等级分别为1 和3 的实际运行管道的打磨与未处理样品,都得到了较好的预测结果,说明老化等级模型在不同的样品中保持了较好的稳定性与泛化能力,同时,可以发现打磨与未处理样品的预测准确率差别较小,说明选取未打磨的100~200 脉冲激光段得到的光谱数据可得到较好的模型预测结果,从而避免表面未处理样品的表面特性对LIBS 测量的干扰,得到较好的老化等级模型预测效果。
2.3 SVM 老化等级模型的鲁棒性分析
为了研究SVM 金属老化等级模型在不确定性的扰动下保持性能不变的能力,需要对预测模型的鲁棒性进行评估。本文利用随机算法,挑选部分训练集的光谱数据去建立SVM 老化等级模型,3 次随机挑选的样品占原训练集样品的百分比为85%、50%、25%,即选取每个样品100 个测量点中的85、50 和25 个光谱数据样本用于建立3 个不同的SVM 预测模型,其中每个百分比设置将重复5 次测量点挑选和建模,平均后以获得统计结果[6]。
鲁棒性分析的结果如图7 所示,SVM 老化等级模型的训练集5 折交叉验证准确率以及预测集准确率随着用于建立模型的光谱样本数的减少而减少,但利用85%、50%的测量点光谱数据所建立预测模型依然拥有较高的准确率和稳定的表现。这个结果意味着SVM 预测模型拥有较为可靠的特征提取能力和泛化能力,说明SVM 老化等级模型检测结果的有效性是可信的。
图7 不同百分比的测量点光谱数据建立的SVM 预测模型的平均准确率
3 结论
1)将LIBS 技术应用于火力发电厂实际运行管道的老化等级预测,对比表面打磨处理样品与表面未处理样品的Fe、Cr 等代表管道重要性质的基体及合金元素谱线的谱线强度随脉冲数的变化情况,发现表面特性的影响在前100 的激光脉冲内较为明显,在100~200 的激光脉冲段,打磨与未打磨样品的谱线趋于相同。
2)在此现象下,将表面未处理样品的100~200 激光脉冲段光谱数据输入SVM 老化等级模型,得到了与打磨样品相似且良好的预测结果。
以上结果表明,选取合适的激光脉冲段可避免金属管道的表面特性对LIBS 测量的影响,直接测量未处理表面的金属管道样品可以得到较好的老化等级预测结果,为LIBS 技术应用到火电厂金属管道受热面失效检测提供了方案。