APP下载

均质地层中桩筏基础筏板荷载分担比的归一化分析方法

2020-12-02王凌罗如平

土木与环境工程学报 2020年6期
关键词:筏板安全系数桩基

王凌,罗如平

(1.广州地铁设计研究院股份有限公司,广州 510010;2.华东交通大学 土木建筑学院,南昌 330013;3.江西省地下空间技术开发工程研究中心,南昌 330013)

传统桩基础设计方法通常假定上部荷载全部由桩来承担,不考虑桩间土对基础承载力的贡献。在过去几十年的工程实践中,越来越多的设计人员认识到传统桩基础设计方法在某些情况下过于保守,由于筏板与地基土客观存在的接触作用,筏板能分担相当一部分上部荷载[1-3]。因此,如果在桩筏基础设计中考虑筏板的荷载分担作用,除了能满足建筑物对基础安全性和变形的要求外,还能减少较为可观的桩数,降低基础工程造价。

鉴于此,笔者基于刚性板桩筏基础共同作用计算模型,通过分析一系列不同土体参数及基础几何参数下的桩筏荷载分担比变化规律,提出了考虑基础整体安全系数影响的归一化筏板荷载分担比分析模型,并通过10个实际工程案例验证了归一化模型的准确性。

1 既有计算方法分析

表1为相关文献中给出的桩筏荷载分担比计算方法。从表中可以看出,大部分桩、筏荷载分担比计算方法都需要较多参数,如方法1、2、4,而这些参数的确定又较为复杂,存在较大的不确定性,因此,在实际工程应用中存在诸多不便。

此外,目前的桩、筏荷载分担比计算方法多为“确定性”计算方法,无法考虑荷载分担比在加载全过程中动态变化的特点。方法1、4考虑了桩基荷载分担比随沉降的变化过程,但由于桩筏基础的沉降预测是一个复杂的课题,在设计阶段往往难以准确预测出基础沉降值的大小。因此,在实际设计中难以准确计算在工作荷载作用下桩、筏荷载分担比的大小。

考虑到基础整体安全系数Fs较基础变形更容易在设计阶段确定,因此,以工程设计中常用的安全系数Fs作为变量,建立起筏板归一化荷载分担比分析模型,更便于实际工程的设计应用。

表1 桩筏基础荷载分担比计算方法Table 1 Calculation methods for load sharing ratio of piled raft

2 桩筏基础分析模型及验证

2.1 刚性板桩筏基础分析模型

图1为桩筏基础共同作用分析模型,为简化计算过程,提高计算效率,筏板假定为刚性筏板。在刚性筏板假定的基础上,筏板下各桩头具有相同的沉降值。对于实际工程而言,由于筏板自身、群桩和上部结构对基础体系刚度的贡献很大,采用刚性筏板基础也能较好地反映桩筏基础的荷载分担特性[12-14]。

图1 桩筏基础共同作用示意图Fig.1 Schematic diagram of soil-pile interactions in piled raft foundation

刚性板桩筏基础共同作用模型的分析:

ws=FsPs

(1)

式中:ws和Ps分别为土体竖向位移和土体反力列向量,其展开式为

(2)

式中:k和n分别为筏板和桩身节点数。

Fs为土体柔度系数矩阵,矩阵各元素反映桩、土、筏之间的相互作用

(3)

(4)

式中:Hsoil为可压缩土层深度,该深度以下为不可压缩土层;requ为筏板单元等效半径(按矩形筏板单元与圆形筏板单元面积相等原则计算得到);Gs为土体剪切模量。

(5)

式中:ri.j为筏板单元i和单元j中心点之间的水平距离;E为土体弹性模量。

2)桩身位移方程。考虑桩身单元划分的灵活性,根据杆系有限元理论,将桩看作通过一系列结点连接的杆单元,通过联立各单元刚度矩阵得到基础整体刚度矩阵Kp,进而得到桩身位移与荷载的关系式,即:

Kp·wp=Qtop-Ps

(6)

式中:wp为节点竖向位移列向量;Qtop为基础外荷载列向量

Ktot·wp=Qtop

(7)

式中:Ktot为桩筏整体刚度矩阵,为群桩竖向刚度矩阵Kp和地基土刚度矩阵Ks之和。

4)在模型中考虑土体塑性影响,令桩、筏各节点极限抗力为

(8)

5)为考虑桩筏基础的非线性沉降特性,土体模量E采用式(9)所示双曲线型变化函数。

E=Es(1-Rf·q/qu)2

(9)

式中:Es为土体的初始弹性模量;q、qu为节点当前节点反力值和极限抗力;Rf为非线性系数,取值范围在0~1。

2.2 模型验证

以Basile等[15]给出的经典计算案例为例,其桩筏基础布置及相应材料参数如图2所示。筏板尺寸为6 m×10 m,筏板厚度为1 m,筏下布置9根桩径为0.5 m、桩长为20 m的桩基,单桩基础竖向抗压承载力为873 kN。

图2 桩筏布置示意图及相应材料参数Fig.2 Layout of piled raft and its corresponding material parameters

图3 计算结果对比图Fig.3 Comparison graph of calculation results

3 筏板荷载分担比归一化分析

3.1 计算工况

采用上述介绍的刚性桩筏基础共同作用分析模型进行筏板荷载分担比的参数分析,其计算模型如图4所示。

图4 桩筏基础布置模型Fig.4 Calculation model of piled raft

刚性桩筏基础桩基均匀布置,桩径为d,桩长为lp,桩间距为S,筏板边缘距离桩基外围尺寸为a=d。分析桩径、桩长、桩间距、桩数及土体参数对筏板荷载分担比的影响,共计算了5大类工况,相应计算工况如表2所示。

表2 模型计算工况Table 2 Calculation conditions of model

3.2 筏板荷载分担比影响因素分析

3.2.1 土体参数影响 图5所示为在不同土体参数条件下筏板荷载分担比随基础整体安全系数Fs的变化规律。基础整体安全系数Fs的定义为

Fs=(N·Qp+Qur)/Q

(10)

式中:N为桩数;Qp为单桩极限承载力;Qur为筏板极限承载力;Q为上部总荷载。

图5 不同土体参数下筏板荷载分担比αr变化规律Fig.5 Load sharing ratio αr under different soil condition

从图5可以看出,随着基础整体安全系数Fs的减小,筏板荷载分担能力逐渐发挥,其相应的荷载分担比αr逐渐增大。总体来看,当基础整体安全系数Fs>4时,筏板荷载分担比的变化速率显著降低,筏板荷载分担比基本维持不变。这可能是因为上部总荷载Q相对较小,大部分桩侧与筏板节点应力仍处于弹性受荷状态,没有进入屈服阶段,桩基础与筏板同步承担上部荷载。此外,从图5中还可以看出,土体参数对筏板荷载分担比基本没有影响,这主要与模型假定的均质土体条件有关,桩基及筏板的承载性能同步、成比例发挥。

3.2.2 桩数影响 图6所示为在不同桩数条件下筏板荷载分担比随基础整体安全系数Fs的变化规律。与直观理解不同的是,在初始加载阶段,随着桩数的不断增加,筏板荷载分担比也逐渐增大。其原因是桩间距保持恒定,因此,单桩所分摊的筏板面积一致,而由于群桩效应的存在,桩数越多,筏板中间部位的桩基荷载发挥能力越弱,导致在基础整体安全系数较大时,筏板荷载分担比随着桩数的增加而不断增大。

图6 不同桩数下筏板荷载分担比αr变化规律Fig.6 Load sharing ratio αr under different pile number

3.2.3 桩间距影响 图7所示为在不同桩间距条件下筏板荷载分担比随基础整体安全系数Fs的变化规律。在此只介绍桩数为100时的变化规律,其他工况条件下的变化趋势与之完全相同。筏板的荷载分担比随着桩间距的增大而显著提高,因此,在桩筏基础设计中采用大桩距桩基布置方案不仅能有效发挥筏板荷载的承载潜力,还能减少桩基数量,节约建设成本。

图7 不同桩间距下筏板荷载分担比αr变化规律Fig.7 Load sharing ratio αr under different pile space

3.2.4 桩长影响 不同桩长条件下筏板荷载分担比随基础整体安全系数Fs的变化规律如图8所示。从图中可以看出,随着桩长的增加,桩基荷载承载力提高,筏板所承担的荷载比例逐渐降低,但降低的幅度明显减小。

图8 不同桩长下筏板荷载分担比αr变化规律Fig.8 Load sharing ratio αr under different pile length

3.2.5 桩径影响 桩径对桩筏荷载分担比的影响如图9所示,从图中可以看出,随着桩径的增大,筏板荷载分担比也逐渐增大。这是因为在保持桩间距比S/d恒定情况下,桩径d越大,相应的桩间距离S也越大,单桩分摊的筏板面积也更大,单桩承载力的增长水平(基本与桩径d的一次方呈比例)要低于筏板承载力(与桩径d的二次方呈比例)的提高幅度。

图9 不同桩径下筏板荷载分担比αr变化规律Fig.9 Load sharing ratio αr under different pile diameter

3.3 筏板荷载分担比归一化模型

(11)

式中:αr为筏板实际荷载分担比;d0为标准桩径,d0=1 m;其余参数物理意义同前。

图10 归一化筏板荷载分担比曲线Fig.10 Normalized curves of raft load sharing ratio

从图10中可以看出,引进归一化荷载分担比后,不同工况下筏板荷载分担比曲线能较好地得到了统一。相应的拟合函数如图10所示。

4 工程案例验证

为了验证所提出的归一化模型的有效性,搜集了10个位于不同区域的工程案例,场地包括软、硬黏土及粉土等,桩长12~60 m,桩径0.3~0.9 m,平均桩间距2.6d~9.7d,桩数20~351,基本涵盖了工程上常见的桩筏基础尺寸,具体工程实例资料如表3所示。其中,若相应文献中没有明确给出建筑物安全系数Fs,则根据场地地质条件、荷载大小等信息,通过式(10)计算得到。

从表3中可以看出:采用传统桩基础设计方法设计的建筑物整体安全系数大于5;相反,采用减沉桩设计的建筑物,由于本身已考虑了筏板的荷载分担作用,其整体安全系数在2~3之间,实现了基础设计安全高效、经济合理的目的。

表3 桩筏基础工程实例资料汇总Table 3 Database of project example of piled raft

图11为工程实测归一化荷载分担比分布图,从图中可以看出,实测工程案例的归一化荷载分布规律与计算得到的分布模型吻合较好,尤其是当基础整体安全系数Fs≥5时,验证了归一化分析模型的适用性。

图11 工程实测归一化荷载分担比分布图Fig.11 Measured normalized raft load sharing ratio

需要说明的是,该归一化荷载分担比计算模型主要适用于均质地基或吉布森地基,对于场地表面具有较厚硬壳层或者典型端承桩的情况,模型不适用,可能会带来较大误差。

5 结论

基于桩筏基础共同作用模型分析了影响桩筏基础筏板荷载分担比的各因素,并根据计算结果提出了均质地层中归一化筏板荷载分担比计算模型,根据实际工程案例验证了归一化模型的有效性,得到以下结论:

1)总体而言,筏板荷载分担比随着基础整体安全系数Fs的增大而逐渐减小,但当基础整体安全系数Fs>4时,筏板荷载分担比基本保持不变。

2)桩数、桩长、桩间距直接影响归一化筏板荷载分担比的大小,但影响程度存在差别:桩间距影响较为显著,桩长次之,桩数影响程度较弱。

猜你喜欢

筏板安全系数桩基
桩筏基础在处理桩基质量问题中的应用
桥梁桩基处理泥浆固化技术应用
采用桩基托换进行既有铁路桥加固分析
筏板基础大体积混凝土的质量控制
筏板基础大体积混凝土施工技术分析
飞机结构设计中载荷安全系数的工程意义1)
建筑桩基检测及质量控制
高速铁路桩筏结构的筏板合理设计研究
考虑材料性能分散性的航空发动机结构安全系数确定方法
筏板基础刚度取值对其承载性状影响的数值分析