分频倾角相干融合技术在琼东南盆地深水区断裂解释中的应用
2020-11-24李飞跃杨海长曾清波
李飞跃,杨海长,纪 沫,曾清波,赵 钊,孙 瑞
(中海油研究总院有限责任公司,北京100028)
断裂是岩层受应力作用发生错断或扭曲并沿破裂面有位移的地质现象,是控制油气生成、运移、聚集和分布的重要因素,可以指导区域应力的认识研究和圈闭的形成演化规律分析,制约着油气层的连通性及油气水关系的变化。断裂的精细识别与刻画及其平面组合关系的确定是构造解释的基础,对油气勘探目标的评价和井位设计具有重要意义。研究人员对断裂识别技术进行了许多探索[1-5],主要是通过优化不同的技术组合提出改进方法,提高对断裂、裂缝的识别能力。常用的技术方法主要为相干属性[6]、地震曲率[7]、优势频带相位[8]、蚂蚁体[9]、多属性融合[10]、最大似然属性[11]等叠后地震属性。地震曲率、优势频带相位对中小规模褶皱、凸起等构造具有较好的识别能力,地震曲率产生变化的位置仅表明地层发生变形的位置,很难清晰反映断裂形态与边界位置,在油田开发阶段微断裂的识别和储层分析优势较为突出[8,12-14];基于蚂蚁体的各种技术组合或者改进算法均是针对微裂隙、裂缝或者小尺度断裂的精细识别,对于中、大尺度的断裂识别能力较差,不能较好地刻画断裂的空间延展规律及连续性[15-17]。地震多属性能够有效地避免单一属性的局限性,重点突出异常体反射特征,降低地震单一属性的多解性,在沉积研究、储层反演、油气检测中的应用越来越多[18-20];最大似然属性适用于小尺度裂缝的预测和描述,但不能准确识别中、大尺度断裂之间的连接关系。在勘探目标精细评价研究中,需要对不同尺度的断裂开展精细解释,断点清晰、规模较大的断裂及断距小于地震分辨率或者地震响应只有同相轴扭曲或振幅微小变化的微、小断裂的识别都至关重要,单一属性同时识别的能力较差,不能有效地指导断裂精细解释。
本文针对琼东南盆地深水区松南-宝岛凹陷复杂断裂难以准确识别,断裂组合关系、延展性难以确定的问题,基于频率越高对断裂分辨能力越强的基本认识,开展叠后地震数据分频倾角相干融合技术的应用研究。在研究区地震数据频谱分析的基础上,采用断裂构造滤波和构造平滑降低全频信息中的噪声干扰,提高信噪比,优选出地震主频附近与高于地震主频的分频倾角相干属性,进行RGB融合,提高大断裂、小断裂同时识别的能力,改善断裂延展性刻画的效果,最终提高断裂解释的效率和准确性。
1 基本原理
1.1 分频倾角相干融合技术原理
频谱分解技术是一种利用数学变换,通过分析原始地震资料的频谱特征,将原始地震数据转化为频率域的技术,它能消除重复冗杂信息,提高地质目标的展示能力[21-24]。地震资料通过增强断裂显示的构造滤波和构造平滑处理,可以有效滤除快速变化的信号,增强地震同相轴的连续性,有效地降低噪声干扰。采用零相位子波与地震道做褶积的方法进行频谱分解(generalized spectral decomposition,GSD),可以解决短时窗傅里叶变换法(STFT)和连续子波变换(CWT)垂向时间分辨率和频率分辨率不足的问题,更加真实地接近叠后地震反射特征,突出断面与围岩的差异性,提高地震数据对断裂的刻画能力,为多尺度断裂的同时识别提供基础。
利用预处理分频后的地震调谐数据体,基于本征结构相干技术,在倾角约束下计算相干属性,本质就是沿分频调谐数据体计算点的倾角、方位角进行追踪扫描提取所需的属性信息,计算道与道之间的相关值,从而有效地压制因地层倾角造成的非相干噪声,能够更加符合地质体的实际规律。分析频率对不同尺度断裂的响应规律和特征,优选出分别对大断裂、小断裂响应特征明显的多个分频相干体进行RGB属性融合。通过调节各分频体的融合比参数,实现具有同时识别不同规模断裂的多尺度相干体,弥补单一分频相干体分辨力不足的问题,克服全频信息噪声突出现象,更加全面地反映断裂信息,获得不同尺度断裂检测结果,对常规地震数据体上难以识别的构造特征,能够突出显示有效信息。
1.2 分频倾角相干融合技术思路
研究区断裂具有走滑性质,断裂发育复杂,发育规模差异较大,常规相干技术、蚂蚁体、最大曲率等方法同时识别不同尺度的断裂效果不理想,需要针对不同尺度的断裂采用不同的技术手段,过程复杂且效率低。全频信息噪声较大,不利于刻画断裂平面的连接关系及延展性。分频倾角相干技术思路的核心就是基于不同频率对不同尺度的断裂具有不同的识别效果,首先进行叠后地震数据解释性噪声预处理、频谱分析、分频处理及倾角相干处理,综合开展基于构造滤波和平滑处理的分频倾角相干融合技术的研究,基本流程如图1所示。关键步骤包括以下4点:①采用增强断面显示效果的构造滤波和构造平滑处理整体降低地震资料随机噪声,提高信噪比;②分析地震频谱信息,落实预处理后目的层段有效频谱范围,优选分频计算方法,指导地震资料分频处理;③结合倾角相干属性,分析频率对不同级别断裂识别的规律,落实分频倾角相干属性体的优选方法;④将不同分频体倾角相干属性体进行融合,调整属性体融合比例参数,结合实际地震剖面进行验证。
图1 分频倾角相干融合技术流程
2 实际应用效果及分析
松南-宝岛凹陷位于琼东南盆地中央坳陷带东段深水区,北接神狐隆起与松涛低凸起,南邻松南低凸起,东靠长昌凹陷(图2)。松南-宝岛凹陷呈NE-SW向展布,水深在300~2000m,受南海扩张及区域应力旋转的影响,新近系发育大量张扭性走滑断裂[25],地震剖面上发育多米诺式、负花状等构造样式,小断裂较为发育(图3),平面上表现为帚状或雁列状特征(图4),整体呈NWW-EW向分布。2018年钻探了XX-1井,在三亚组发现近30m气层,证明了松南-宝岛凹陷是生烃凹陷,具有良好的勘探前景。
研究区位于松南-宝岛凹陷南部斜坡带,新近系的三亚组海底扇及水道砂是主要的勘探层系,晚中新世受张扭应力的影响,小、微断裂发育。利用常规相干技术进行断裂识别的效果不理想,随机噪声很大,微、小断裂几乎被背景噪声所淹没,不能准确反映各级断裂主次关系、搭接关系及其空间延展特征,不能满足复杂断裂的精细解释。
在研究过程中选取工区中断裂较为复杂的小块数据(图4中红框范围)进行全面对比分析,确定相关的计算方法和参数,以指导全研究区应用。
首先对试验区叠后地震资料进行预处理,采用增强断裂显示的构造滤波技术,降低地震资料中因构造快速变化产生的噪声信号,保留断裂与地层之间的接触关系。在此基础上对数据体进一步进行构造平滑处理,选择增强边界显示的计算方法,可以进一步减小地层中因同相轴局部的突然变化产生的背景噪声,使断裂面更加平滑,突出断面的显示特征。提取经过预处理的倾角校正相干切片,对比原始相干属性切片可以看出,原始地震资料的相干属性背景噪声比较严重,断裂的分辨率相对较低(图5a),而经过预处理的地震数据体相干属性,能够明显减少噪声的干扰,凸显出断裂信息,改善断裂刻画效果(图5b)。
图2 松南宝岛凹陷研究区位置
图3 松南低凸起北坡复杂断裂的剖面特征(位置见图2中的AB)
图4 研究区4400ms时间相干切片断裂平面分布(红框为本技术试验分析数据范围)
研究区陵水组三段以下的地震资料品质较差,研究主要目的层为三亚组,针对预处理的4800ms以上的地震数据体进行整体频谱分析,由图6可以看出,研究区目的层段地震资料频带为10~65Hz,主频为40Hz。基于通用谱分解技术(GSD),采用实际地震资料分频对比优选计算方法,分别采用90°相位相关系数法、零相位相关系数法、零相位地震道褶积法进行地震资料分频处理,结果如图7所示。从图7可以看出:相关系数法的分频结果粗化了地震识别效果,弱化了断裂面显示特征;零相位褶积法的结果能够与原始地震剖面保持一致,增强了断面信息,改善了断面的平滑性和连续性。
图5 原始相干切片(a)和基于滤波和构造平滑处理后的倾角相干切片(b)
对滤波处理后的数据体,在有效频带内采用零相位褶积法对其进行分频处理,计算循环次数设置为1,全道参与计算,这样背景噪声会进一步降低,信息也更加全面准确,进而得到20,30,40,50,60Hz不同频率的分频数据体(图8),与原始地震数据剖面(图7)进行对比可知,随着频率的增大,小断层的断面特征更加清楚,断点更加清晰。从原始地震剖面上很难识别的微、小断裂系统形态,通过对预处理的数据体进行分频处理,在40Hz的分频地震剖面上这些微、小断裂特征得到清晰显示,断裂的连续性和断裂之间的接触关系最为明确,明显降低了随机噪声的干扰,断裂特征比原始地震剖面有显著提高。同时,高于地震主频的调谐数据体能够进一步改善大断裂断面,因为高频噪声的相对凸显,对小、微断裂有一定的弱化。
图6 研究区目的层地震数据频谱
在倾角约束条件下,采用第三代相干算法(C3)对分频数据体提取相干属性(图9),与常规相干切片(图5a)进行对比。分析分频倾角相干切片可以看出,40Hz的相干切片对各级断裂的刻画相对明显,断裂分辨率更高,50Hz、60Hz的相干切片对大断裂识别较好,而且频率越高,背景噪声越小,与地震剖面处理结果相一致。因此,在有效的地震频谱范围内,地震主频附近分频体刻画断裂的综合性效果最佳。高于地震主频的分频体不完全是有效地震信息,包含一定的噪声,随着频率增高,有效信息相对减少,对小断裂的识别能力会有一定的弱化,但大断裂识别较清晰。这有利于对地震数据应用分频倾角相干融合技术研究不同尺度、不同规模的断裂的发育情况。
图7 采用不同分频方法计算的30Hz分频体a 原始地震资料; b 90°相位相关系数法; c 零相位相关系数法; d 零相位褶积法
图8 经滤波处理的不同单频地震数据剖面a 20Hz; b 30Hz; c 40Hz; d50 Hz; e 60Hz
图9 不同频率的分频倾角相干切片a 20Hz; b 30Hz; c 40Hz; d 50Hz; e 60Hz
因为不同频带的地震数据可以检测出不同尺度的断裂,因而分析不同频率的分频倾角相干切片,优选出地震资料主频40Hz的分频倾角相干体,并与频率高于地震资料主频的50Hz、60Hz分频倾角相干体进行融合(图10a),进一步增强断裂的显示,提高对大断裂的识别能力,同时改善对微、小断裂的刻画。原始地震资料的常规相干切片背景噪声比较严重,断裂的成像分辨率相对较低(图5a),基于滤波和构造平滑处理的倾角相干切片有效压制了噪声,但断层的连续性、延展性展现不清晰(图5b)。分频倾角相干融合体切片压制了背景噪声,将不同级别、不同方向的断裂属性融合在一起,有效地提高目的层断裂识别精度,断裂的更多细节信息在融合体上呈现出来,能够更准确地刻画不同级别、不同尺度的断裂特征。结合地震剖面调整属性融合参数比例,从分频倾角相干融合体时间切片识别的12条断裂与地震剖面一一对应,断裂F1、F9同相轴只有轻微的扭动,断距为6~12m,在融合体时间切片上能够清晰地识别,证明分频倾角相干融合对断裂的检测是正确的(图10a),能够有效地指导断裂的精细解释(图10b)。
在研究区利用基于滤波和构造平滑处理的分频倾角相干融合技术刻画断裂(图11),明显改善了断裂的识别效果,断裂组合关系、延展特征得到了很好的刻画,能够更加有效、正确地指导解释。在地震剖面断裂和目的层解释完成后,应用沿层分频倾角相干融合属性,可以看出目的层断裂之间的连续性、延展性和搭接关系清晰明确(图12a),可以高效指导平面断裂组合(图12b)。可见,基于滤波和构造平滑处理的分频相干融合技术为深水区复杂断裂的精细构造解释提供了一种有效可靠的多尺度、多分辨率的分析方法。
图10 基于滤波和构造平滑处理的分频倾角相干融合体4400ms时间切片(a)与地震剖面断裂(b)
图11 全工区分频倾角相干融合4400ms时间切片
利用分频倾角相干融合技术精细刻画了研究区复杂断裂,明显降低噪声,有利于分析出构造应变的强弱区域,断裂的断距和断点位置也更加清晰。有效识别延伸大于100m,断距大于5m的断裂,各级断裂的连续性和延展性得到改善,断裂之间的搭接关系更加明确,指导完成研究区精细解释120条断裂,目的层平面断裂组合90条。断裂在平面上呈现NW-SE展布,发育有帚状、雁列式平面组合样式,说明该区域受到一定的张扭应力作用。结合地震振幅属性,精细落实了一个大型构造-岩性复合圈闭,为油气运聚研究和井位设计奠定了构造资料基础。
图12 分频倾角相干融合沿层切片(a)与目的层断裂解释结果(b)
3 结论
1) 在有效的地震频谱范围内,采用零相位地震道褶积的方法可以提高地震分频后对断裂的识别效果,主频附近的分频体刻画断裂的综合性效果最佳;高于地震主频的分频体有效信息相对减少,存在弱化微、小断层的响应特征,大断裂刻画较为清晰。
2) 基于滤波和构造平滑的分频倾角相干融合技术能够显著降低相干背景噪声,有效提高断裂的识别精度,改善了断裂的延展性和连续性,清晰地刻画了断层之间的搭接关系,有利于复杂圈闭的落实和油气成藏的研究,对于其它断裂复杂发育区的解释具有指导意义。