APP下载

碳纳米材料与玻璃纤维界面实现高效稳定焊接

2020-11-09

纺织科学研究 2020年10期
关键词:机械性能纤维材料电热

近日,美国特拉华大学付堃教授与青岛科技大学杜爱华教授联合提出了一种新颖的跨尺度制造概念来处理纳米材料与微米尺度纤维材料的焊接工艺,并成功地展示了一种电热冲击方法来处理具有良好结合力和优异机械性能的碳纳米材料/玻璃纤维界面焊接的应用。

电热冲击焊接技术过程是:通过施加脉冲电压,导电的碳纳米层产生焦耳热,这些热量可以提高局部温度并使玻璃纤维材料局部熔化,从而将纳米材料与宏观材料焊接。快速多次循环电热冲击可以为纳米焊接提供快速、高温的环境,同时避免了碳纳米材料和固体纤维材料的降解。由于采用瞬时纳米焊接技术,玻璃纤维的本体结构和性能在快速电热冲击下并未损伤,保持了原有玻璃纤维力学性质。通过单纤维拉拔试验测量了碳纳米管/玻璃纤维与环氧树脂之间的界面剪切应力(IFSS)比纯玻璃纤维与环氧树脂之间的提高了约54.2%。

研究人员对焊接后的碳纳米管/玻璃纤维形貌做了详细研究,结果表明焊接后的碳纳米管/玻璃纤维具有良好的机械结合性能。碳纳米管可以被嵌入玻璃纤维表面并被锚固,在水溶液中经受剧烈的超声波作用而不会脱落。同时,玻璃纤维表面包覆的碳纳米管网络在与玻璃纤维的接触区起到纳米加热器的作用,熔融玻璃可以物理地锚定这些碳纳米管网络,在玻璃纤维和碳纳米管之间形成牢固的结合,从而提高了玻璃纤维的韧性。故焊接后的碳纳米管/玻璃纤维长丝具有优异的结构稳定性、柔韧性和导电性,保持了与原玻璃纤维相似的物理机械性能。综上所述,电热冲击技术的优异性能和潜在的较低成本为跨规模制造提供了一种连续、超快速、高能效和能够连续大规模生产的工艺,可以为纳米-宏观的跨规模制造提供有效的解决方案。

猜你喜欢

机械性能纤维材料电热
粘胶纤维与Lyocell纤维增强聚乳酸材料对篮球训练器材及装备性能的比较
可拆洗自如的电热水龙头
《做一个电热切割器》教学设计
探析用于高层建筑的新型桩基的机械性能
浅谈个体防护装备高新技术纤维材料的发展
Pxi测试系统在航空发动机试验中的应用
镁合金在机械加工中的应用
OMMT改性MDI型聚氨酯胶黏剂的制备及力学性能
清新自然小公主