南天山造山带南缘渭干河碎屑锆石U-Pb年代学研究及地质意义
2020-11-06米尔古丽·阿布拉郭瑞清刘桂萍
米尔古丽·阿布拉 郭瑞清 刘桂萍
摘 要:渭干河流经南天山造山带南缘,为了解南天山洋演化历史,对该河流河砂样品中碎屑锆石进行U-Pb定年测试,结果表明,碎屑锆石年龄主要集中在460~400 Ma和310~260 Ma,少量分布在660~610 Ma和830~760 Ma,无中生代和新生代年龄记录。据本文数据并结合南天山北缘河流样品中已发表的锆石U-Pb年龄数据对比研究表明:南天山洋古生代期间俯冲消减作用具长期性和多階段性。830~610 Ma(新元古代中期)超大陆裂解,南天山洋打开;460~400 Ma(晚奥陶世至中泥盆世)南天山洋南北双向俯冲产生了大量的大陆弧岩浆作用,380~320 Ma(晚泥盆世至中石炭世)南天山洋为单一的北向俯冲,310~260 Ma(晚石炭至早二叠世)南天山洋最终闭合并伴随发生后碰撞岩浆构造活动。
关键词:南天山造山带;碎屑锆石;年龄谱;古生代岩浆岩;演化历史
南天山造山带位于中亚造山带西南缘,是中亚造山带重要组成部分[1]。地质演化伴随着古南天山洋的开启-闭合过程,以及塔里木克拉通与伊犁-中天山地块的陆陆碰撞[2]。近年来国内外学者在南天山地区进行了大量的构造地质学、沉积地层学、变质岩石学,古地磁、岩石地球化学等方面的研究[3-11],但是,南天山洋在古生代期间的闭合时限和俯冲方向,以及塔里木克拉通与伊犁-中天山碰撞时间和构造背景等科学问题至今仍未达到共识[4,6-7,12-16]。该地区在长期复杂的构造演化过程中,伴随相应的岩浆活动,形成与之对应的侵入岩或火山岩。但这些岩石遭受了后期的改造和剥蚀,保存和出露不全面,另外,南天山地形条件相对较差,交通不便,前人的研究大多局限于出露的单个或几个花岗岩体,从而导致对上述一些科学问题未能很好解决。河流是一个天然的沉积物分选系统,具有从各类岩石中收集和分选碎屑物质的能力。因此,河流中的碎屑锆石是揭示那些海拔较高、地形复杂、自然条件恶劣地区岩浆事件和构造演化的有利工具[17]。较之单个岩体,碎屑锆石所记录的年龄范围更广、控制的区域更大。渭干河发育于南天山南缘(图1-a),流经南天山南部的广大区域,属塔里木克拉通北缘;南天山北缘河流流经地域为伊犁-中天山地块南缘,两者以南天山造山带为分水岭(图1-b)。河流中的碎屑锆石主要源于流域内的地质体并携带有源岩的重要信息。通过对渭干河沉积物中的碎屑锆石U-Pb年代学研究,并结合已有资料,揭示南天山造山带构造-岩浆热事件并为其构造演化提供一定的约束。
1 区域地质背景
中国境内的阿尔泰、准噶尔和天山是组成中亚造山带西南缘的主要构造块体(图2-b)。天山呈EW走向延伸,西起乌兹别克斯坦,经塔吉克斯坦、吉尔吉斯斯坦、哈萨克斯坦,东延至中国新疆和甘肃[1,7]。中国境内天山又被分为东天山和西天山,西天山从南到北依次划分为南天山造山带、中天山地块、伊犁地块,北天山造山带[7,18-19](图2-a)。
南天山造山带位处伊犁-中天山地块与塔里木克拉通之间,北部以阿特巴希-依尼尔切克-那拉提南缘断裂为界,南部以塔里木克拉通北缘断裂为界(图2-b)[20]。由大陆基底、古生代海相沉积岩、蛇绿岩和高压超高压变质岩组成的一条复杂增生造山带[19]。造山带中发育有大量的花岗质侵入岩,形成时代主要集中在早古生代至晚古生代。早古生代主要为花岗闪长岩、石英二长岩及闪长岩,岩石具有钙碱性陆弧岩浆岩的特征,晚古生代主要由富钾钙碱性花岗岩组成[13,21-23]。
中天山与伊犁地块是两个具有前寒武纪基底和古生代大陆弧的微陆块[24]。中奥陶世,伊犁地块与中天山地块联成统一的地块[25-26],中—新元古界的斜长角闪岩、大理石、花岗片麻岩、石英岩以及各种片岩组成其古老基底[27],中天山与伊犁地块内广泛出露古生代长英质火山岩和侵入岩,岩浆结晶年龄主要在500~260 Ma之间[28-30]。
塔里木克拉通是中国最大的前寒武陆块之一,中部主要为新生代沉积物,东北部、东南部、西南部分别为库鲁克塔格、阿尔金塔格、特克里克,都出露基底岩石。塔里木北缘断裂是塔里木克拉通与南天山造山带的界线。塔里木北缘的岩浆岩主要为前寒武纪岩石,近期发现塔里木北缘也广泛发育晚奥陶世到中泥盆世花岗岩类和火山岩,主要集中在东北部库鲁克塔格地区[10,31-34]。另外,早二叠世岩浆岩在塔里木北缘广泛存在,具有双峰式火山岩系列特征[35]
2 样品采集
渭干河发源于南天山造山带南缘,由木扎提河、卡普斯浪河、台勒维丘克河、喀拉苏河和克孜尔河5条发育于天山南缘的支流汇聚而成。整体呈北高南低,流经塔里木克拉通北缘,可划分为山地、平原流域两大部分,起始海拔落差达6 km。流域内岩浆侵入岩主要以花岗质岩体为主,岩体形成时代为古生代,且志留纪至二叠纪岩体广泛出露。经过对渭干河流域进行野外考察,在下游采集河砂样品,记作18WGH01(图2-a)。样品采集过程中遵循以下原则:为避免岸边物质污染样品,在离岸有一定位置的心滩或边滩采样;为保证具有代表性,样品由河道不同位置碎屑物质的混合样组成;为避免风成沉积物的干扰,采样时去除表面约2~3 cm厚的表层物;样品以中细砂为主。
3 样品分析
锆石分选在西北大学大陆动力学国家重点实验室完成。河砂样品经重砂分选和磁性分选等过程将锆石从中分离出来,在双目镜下挑选出表面整洁无裂纹、晶型较好、无包裹体的至少300颗锆石进行年代学测试。将分选出的锆石颗粒用环氧树脂胶结在玻璃板上,再将其细磨至中心部位,以便观察锆石的内部结构,然后进行抛光、清洗处理制成样品靶。锆石阴极发光图像在Mono CL3+型的阴极荧光光谱仪上拍摄完成。锆石U-Pb同位素定年LA-MC-ICP分析在西北大学大陆动力学国家重点实验室完成。锆石U-Pb定年以锆石91500为标样进行同位素分馏校正,具体实验条件和分析流程同侯可军等[47]。数据处理采用GLITTER(Version 4.0)完成。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot完成。数据处理过程中,年龄晚于1.0 Ga的锆石,采用206Pb /238U年龄数据;对于早于1.0 Ga的锆石年龄选取更为可靠的207Pb/206Pb年龄数据。
4 分析结果与数据
该样品中锆石多数呈无色透明,以自形-半自形为主。CL图像下亮度高,粒径在80~400 μm间,长宽比为1:1~4:1,多为长柱状,具明显岩浆振荡环带结构(图3),另外,U和Th元素含量结果显示,约96%的锆石Th/U比值大于0.2(表1),具典型的岩浆锆石特征,所测年龄点则代表着锆石的结晶年龄。
对渭干河样品中79颗碎屑锆石的U-Pb同位素及Th,U等微量元素分析,并排除4个谐和度小于90%的数据,最终获得75个谐和年龄(表1,图4),约占分析锆石总体的95%。这些碎屑锆石年龄除1颗年龄为(2 387±29) Ma外,其余的锆石年龄在(259±3)~(890±11) Ma间变化,年龄主要集中在310~260 Ma和460~400 Ma,部分锆石年龄集中在660~610 Ma和830~760 Ma(图4)。310~260 Ma区间共有34个测点,占总有效数据的45%,相应峰值年龄为286 Ma。460~400 Ma区间共有18个测点,占总有效数据的24%,对应峰值年龄为425 Ma。660~610 Ma区间共有8个测点,占总有效年龄数据的11%。830~780 Ma区间共有9颗,占总有效年龄数据的12%。
5 讨论
5.1 岩浆事件
渭干河流经的区域主要为南天山造山带南缘及塔里木克拉通北缘,结合前人研究,收集了该地区古生代到新生代地层中34个碎屑岩样品(图2-a),共计2 834个U-Pb年龄数据,样品主要为砂岩和含砾砂岩,分布于南天山造山带南部地区,其中还包括了渭干河所流经的石炭纪的野云沟组,二叠纪的小提坎里克组、三叠纪的黄山街组和俄霍布拉克发组,侏罗纪的克拉苏群。另外,本文还收集了该地区岩浆锆石U-Pb有效年龄数据。对比年龄频率直方图可知,河流河砂样品中的碎屑锆石年龄分布与当地岩浆岩、沉积岩中碎屑锆石的年龄分布几乎一致(图5-c,d),表明样品中的碎屑锆石主要来自于南天山造山带南缘。
渭干河样品中660~610 Ma和830~760 Ma 这两个年龄组与南天山造山带南缘新元古代中晚期的670~610 Ma和840~720 Ma 岩浆活动大致相同[6,44](图5-c)。年龄在460~400 Ma(峰值为425 Ma)碎屑锆石含量较多,约占有效年龄总数的24%。该年龄段与南天山造山带北缘460~390 Ma期间发生的强烈岩浆活动基本一致[6,44](图5-a)。这些岩浆岩中大多是花岗岩,其次是长英质火山岩和少量闪长岩和凝灰岩,它们均为钙碱性系列岩石,并具有高场强元素亏损,大离子亲石元素富集的地球化学特征,被认为来自于大陆弧环境[31,32,34]。
样品中年龄记录在310~260 Ma(峰期为286 Ma)的碎屑锆石含量最高,约占总量的45%。晚石炭—早二叠世(约310~270 Ma),南天山造山带中南部广泛发育大量的双峰式火山岩和“S”型、“A”型和高钾花岗岩及少量的富钾正长岩等一系列强烈构造活动的代表性岩石[6-7,13,46]。
5.2 构造意义
南天山造山带是由前寒武纪形成的南天山洋盆在古生代期间俯冲、消减和闭合的过程中,两侧陆块及中间的增生杂体等逐渐拼贴碰撞形成的碰撞造山带[6]。除渭干河样品数据外,本文还结合南天山造山带北缘的特克斯河及支流样品数据(图1-b)共同探讨南天山造山带及相邻地块的构造演化历史。研究表明,渭干河碎屑锆石记录的岩浆活动主要集中在460~400 Ma和310~260 Ma,与特克斯河及其支流样品数据相比,在380~320 Ma末形成年龄峰值。从统计学角度来看,收集的样本数据足以指示该时期处于构造-岩浆活动的间歇期。对比分析结果显示,南天山造山带内具多期构造-岩浆活动特征,表明南天山洋在古生代期间俯冲消减作用具长期性和多阶段性。
5.2.1 830~610 Ma(新元古代中期)碎屑锆石
近年来,塔里木克拉通与罗迪尼亚(Rodinia)超大陆的联系是一个讨论的热点话题[50-52]。随着对塔里木克拉通北缘基性岩墙深入研究及多种地球化学数据的发表,并对比研究全球板块同期构造-岩浆事件,较为认同的是:新元古代,塔里木北缘存在著多期岩浆活动830~800 Ma、790~740 Ma、650~630 Ma,塔里木克拉通历经了长达0.2 Ga的裂解过程,为Rodinia超大陆长期持续裂解的科学命题提供了证据[53-56]。样品的碎屑锆石年龄介于新元古代的占28%,其中年龄集中在830~760 Ma的约占18%,660~610 Ma的约占10%,且形成小的年龄峰值(图5-b)。这些年龄基本对应了塔里木北缘岩浆活动事件,可认为该时期对应着南天山洋盆的打开、伸展构造体制为主的岩浆活动,约束了南天山洋的打开时限[31]。
5.2.2 460~400 Ma(晚奥陶—早泥盆世)碎屑锆石
如前所述,460~400 Ma年龄段碎屑锆石主要来源于南天山南缘460~390 Ma的大陆弧岩浆岩。这一系列近EW向分布的弧岩浆岩的形成均与洋壳俯冲作用有关,表明在晚奥陶—早泥盆世,南天山洋向南俯冲到塔里木克拉通之下,塔里木克拉通北缘属于活动大陆边缘。另外,塔里木克拉通北缘志留—石炭纪砂岩的碎屑锆石中包含大量的46~400 Ma的自形-半自形岩浆锆石,被认为来自于大陆弧环境[4,10],极有可能与古生代南天山洋俯冲有关。该时期塔里木克拉通北缘还出现高压、超高压蓝片岩相、榴辉岩相高级变质岩,岩石伴有强烈的塑性变形,指示了该区俯冲-碰撞构造活动的发生[31,57]。此外,南天山造山带北缘的现代河流在460~400 Ma碎屑锆石年龄记录也很丰富,与广泛出露于伊犁-中天山南缘的460~390 Ma期间的弧岩浆岩一致[13,29,58]。因此,晚奥陶—早泥盆世南天山洋盆南北双向俯冲,塔里木克拉通北缘和伊犁-中天山地块南缘均属于活动大陆边缘。
5.2.3 380~320 Ma(晚泥盆—早石炭世)碎屑鋯石
渭干河中碎屑锆石年龄在380~320 Ma的碎屑锆石仅2颗,约占样品总数的1%。截至目前,南天山造山带南缘尚未发现侵位年龄为晚泥盆—早石炭世的岩浆岩(图5-c),该区古生代—新生代地层碎屑岩样品中仅存在极少部分年龄点,未形成明显峰值(图5-d),此外,在被动陆缘环境下形成的晚泥盆到早石炭世的浅海相地层在塔里木克拉通北缘广泛存在,并与志留系呈不整合接触[18,33],这些证据暗示着早古生代与南天山洋向南俯冲的岩浆事件持续到约380 Ma时已终止,塔里木北缘由活动大陆边缘转变为被动大陆边缘。南天山北缘(伊犁-中天山南缘)的河流样品年龄记录在380~320 Ma的碎屑锆石非常丰富,且这些碎屑锆石极可能来自于伊犁-中天山地块南部地区的弧岩浆岩,当然也不排除少部分来自于南天山造山带,表明伊犁-中天山地块南缘在晚泥盆—早石炭世期间岩浆活动依然频繁,南天山洋在这一时期为单一的北向俯冲到伊犁-中天山地块之下[17, 59]。
5.2.4 310~260 Ma(晚石炭—早二叠世)碎屑锆石
渭干河样品中碎屑锆石年龄以古生代为主,未出现年龄小于260 Ma的锆石颗粒,这与之前南天山北缘的特克斯河与其支流的碎屑锆石研究结果相一致[17,59]。暗示着塔里木克拉通北缘与伊犁-中天山地块南缘的岩浆事件主要发生在古生代,晚二叠世之后几乎没有发生岩浆活动,表明南天山造山带可能在晚二叠世之前就已形成。另外,在南天山造山带中,早二叠世火山岩不整合覆盖在石炭纪早期和晚期地层之上[39],伊犁-中天山南缘的阿特巴希和阿克牙孜高压、超高压变质岩中,榴辉岩相变质年龄主要集中在325~310 Ma[60-61],蓝片岩和榴辉岩的Rb-Sr和40Ar/39Ar测年显示变质年龄主要集中320~310 Ma[60, 62]。通过对这些地层特征与超高压变质岩的研究表明,南天山洋闭合,塔里木克拉通与伊犁-中天山碰撞很可能发生在晚石炭世。
晚石炭世南天山洋闭合,塔里木克拉通与伊犁-中天山地块碰撞,南天山造山带和伊犁-中天山地块南缘早二叠世沉积受正断层控制并伴有双峰式火山岩喷发 ,表明为后碰撞伸展环境。此外,分布在境外吉尔吉斯斯坦南天山的300~280 Ma和中国南天山的290~270 Ma的“A”型花岗岩同样证明在早二叠世为后碰撞伸展环境。
6 结论
(1) 渭干河样品中碎屑锆石年龄主要集中在460~400 Ma及310~260 Ma,部分集中在660~610 Ma和830~780 Ma,与南天山洋北缘碎屑锆石年龄峰值略有不同。
(2) 根据本文并结合南天山北缘的现代河流样品中的U-Pb年龄数据,表明南天山洋古生代期间俯冲消减作用具有长期性和多阶段性。
(3) 南天山洋构造演化历史大致可划分为:830~610 Ma(新元古代中期)南天山洋打开的时限;460~400 Ma(晚奥陶—中泥盆世)可能存在南北双向俯冲,同时发生大陆弧岩浆作用;380~320 Ma(晚泥盆—早石炭世)可能为单一的北向俯冲;310~260 Ma(晚石炭—早二叠世)南天山洋最终闭合并伴随发生了后碰撞岩浆构造活动。
参考文献
[1] 李锦轶,王克卓,李亚萍,等.天山山脉地貌特征、地壳组成与地质演化[J].地质通报,2006,25(8):895-909.
[2] Xiao W J,Huang B C,Han C M,et al.A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens[J].Gondwana Research,2010,18(2-3):253-273
[3] 舒良树,卢华复,印栋豪,等.中—南天山古生代增生-碰撞事件和变形运动学研究[J].南京大学学报(自然科学版),2003,39(1):17-30.
[4] Han Y G, Zhao, G C, Sun, et al.Paleozoic accretionary orogenesis in the Paleo-Asian Ocean: Insights from detrital zircons from Silurian to Carboniferous strata at the northwestern margin of the Tarim Craton[J].Tectonics,2015( 34):334-351.
[5] Han Y G, Zhao G C, Sun M, et al. Detrital zircon provenance constraints on the initial uplift anddenudation of the Chinese western Tianshan after the assembly of the southwestern Central Asian Orogenic Belt[J].Sedimentary Geology, 2016a:1-12.
[6] Huang H,Zhang Z C,Santosh M, et al.Crustal evolution in the South Tianshan Terrane:Constraintsfrom detrital zircon geochronology and implications for continental growth in the Central Asian Orogenic Belt[J].Geological Journal.2018:1-22.
[7] Gao J, Long L L, Klemd R,et al,Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks[J].International Journal of Earth Sciences,2009,98(6):1221-1238.
[8] 李繼磊,高俊,王信水.西南天山洋壳高压-超高压变质岩石的俯冲隧道折返机制[J].中国科学:地球科学,2017(01).
[9] Wang B, Chen Y,Zhan S, et al.Primary Carboniferous and Permian paleomagnetic results from the Yili Block(NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J].Earth and Planetary Science Letters,2007, 263:288-308.
[10] Huang H, Zhang Z C, Santosh,et al.Early Paleozoic tectonic evolution of the South Tianshan collisional belt:Evidence from geochemistry and zircon U-Pb geochronology of the Tie'reke Monzonite Pluton,Northwest China[J].The Journal of Geology, 2013,121:401-424.
[11] 陶再礼,尹继元,陈文,等.南天山早二叠世Ⅰ型花岗岩Sr-Nd-Hf同位素特征:岩石成因和大陆地壳增长的意义[J].地球科学,2019(1).
[12] Xiao W J,Han C M,Yuan C, et al.Middle Cambrian to Permian subductionrelated Accretionary Orogenesis of Northern Xinjiang,NW China:Implications for the Tectonic Evolution of Central Asia[J].Journal of Asian Earth Sciences,2008,32(2-4):102-117.
[13] Long L, Gao J,Klemd R,et al.Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen:Implications for Continental Growth in the southwestern Central Asian Orogenic Belt[J].Lithos,2011,126(3-4):321-340.
[14] Sang M, Xiao W J,Orozbaev R,et al,Structural Styles and Zircon Ages of the South Tianshan Accretionary Complex Atbashi Ridge Kyrgyzstan:Insights for the Anatomy of Ocean Plate Stratigraphy and Accretionary Processes[J].2018,Journal of Asian Earth Sciences,153:9-41.
[15] 郭春涛,高剑,李忠,等.塔里木盆地西北缘四石厂地区下二叠统沉积与物源记录及其反映的构造演化[J].地球科学.2018,43(11):4149-4168.
[16] Zhong L L,Wang B,Zhai Y Z,et al.Deformed continental arc sequences in the South Tianshan:New constraints on the Early Paleozoic accretionary tectonics of the Central Asian Orogenic Belt[J].Tectonophysics,2019,768:1-24.
[17] Ren R,Guan S W,Han B F,et al.Chronological constraints on the tectonic evolution of the Chinese Tianshan Orogen throughdetrital zircons from modern and palaeo-river sands[J].International Geology Review,2017,59:1657-1676.
[18] Han B F,He G,WangX,et al.Late carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen,Central Asia,and implications for the Northern Xinjiang,western China[J].Earth-Science Reviews,2011,109:74-93.
[19] Xiao W J, Windley B F, Allen M B, et al,Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J].Gondwana Research,2013,23:1316-1341.
[20] 朱志新,李錦轶,董莲慧,等.新疆南天山构造格架及构造演化[J].地质通报,2009(12):1863-1870.
[21] Huang H, Zhang Z C, Santosh M,et al.Petrogenesis of the Early Permian volcanic rocks in the Chinese South Tianshan:implications for crustal growth in the Central Asian Orogenic Belt[J].Lithos,2015,228-229:23-42.
[22] Konopelko D,Biske G, Seltmann R,et al.Hercynian Post-collisional A-type Granites of the Kokshaal Range,Southern Tien Shan, Kyrgyzstan[J].Lithos,2007,97(1-2):140-160.
[23] Huang H, Zhang Z C,Santosh M,et al.Geochronology geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in South Tianshan,NW China[J].Ore Geol.Rev,2014,61:157-174.
[24] Huang Z Y, Long X P,Wang X C,et al.Precambrian evolution of the Chinese Central Tianshan Block:Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles[J].Precambrian Research,2017,295:24-37.
[25] 韩宝福,何国琦,吴泰然,等.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J].新疆地质,2004,22(1):4-11.
[26] 高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816.
[27] Wang B, Liu H S, Shu L S,et al.Early Neoproterozoic crustal evolution in northern Yili Block:Insights from migmatite,orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan[J].Precambrian Research,2014,242:58-81.
[28] Wang B,Cluzel D,Shu L S,et al.Evolution of calc-alkaline to alkalinemagmatismthrough Carboniferous convergence to Permian transcurrent tectonics,western Chinese Tianshan[J].International Journal of Earth Sciences,2009,98:1275-1298.
[29] Ma X X, Shu L S, Meert J G,et al.The Paleozoic evolution of Central Tianshan: geochemical and geochronological evidence[J].Gondwana Research,2014,25:797-819.
[30] Ma,X X,Shu L S,Meert J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids[J].Gondwana Research,2015,27:228-243.
[31] Ge R F,Zhu WB,Wilde S A,et al. Neoproterozoic to paleozoic long-lived accretionary orogeny in the northern Tarim Craton:Tectonics[J].v. 2014,33:302-329.
[32] Zhao Z Y, Zhang Z C,Santosh M, et al.Early Paleozoic magmatic record from the northern margin of the Tarim Craton: Further insights on the evolution of the Central Asian Orogenic Belt[J].Gondwana Research,2015,28(1):328-347.
[33] Qin Qie,He Huang,Tao Wang,et al.Relationship of the Tarim Craton to the Central Asian Orogenic Belt:insights from Devonian intrusions in the northern margin of Tarim Craton,China[J].INTERNATIONAL GEOLOGY REVIEW,2016,58(16):2007-2028.
[34] 梁文博,郭瑞清,劉桂萍,等.新疆库鲁克塔格西段橄榄辉长岩脉LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J].地质科技情报,2019,38(01):64-73.
[35] Xu Y G, Wei X,Luo,Z Y, et al.The Early Permian Tarim Large Igneous Province:main characteristics and a plume incubation model[J].Lithos,2014,204:20-35.
[36] Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia: a tectonic and evolutionary innovative review[J]. Earth-Science Reviews,2012,113:303-341.
[37] Xie W,Song X Y,Deng Y F,et al.Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt[J].Lithos,2012,144-145:209-230.
[38] Wang H L, Xu X Y, He S P,et al.Geological map of the Chinese Tianshan Mountain and its adjacent area[J].Beijing Geological Publishing House.2007b.
[39] Liu D D,Jolivet M,Yang W,et al.Latest Palaeozoic-Early Mesozoic basinrange interactions in South Tian Shan (Northwest China) and their tectonic significance:Constraints from detrital zircon U-Pb ages[J].Tectonophysics,2013,599:197-213.
[40] Peng S T, Li Z, Xu C W.Provenance of EarlyCretaceous deposites in Kuqa subbasin,the southernmargin of Tianshan:Implication from detrital zircon LA-ICP-MS age data[J].Acta Sedimentologica Sinica,2009,27:956-966.
[41] Li Z, Peng S T.Detrital zircon geochronology and its provenance implications:Responses to Jurassic through Neogene basin-range interactions along northern margin of the Tarim Basin[J].Northwest China:Basin Research,2010,22:126-138.
[42] Carroll A R,Dumitru T A,Graham S A, et al.An 800 million-year detrital zircon record of continental amalgamation:Tarim Basin, NW China[J].InternationalGeology Review,2013,55:818-829.
[43] Wang M,Zhang J J,Liu K.Continuous denudation and pediplanation of the Chinese Western Tianshan orogen during Triassic to Middle Jurassic: Integrated evidence from detrital zircon age and heavy mineral chemical data[J].Journal of Asian Earth Sciences,2015,113:310-324.
[44] Han Y G,Zhao G C, Sun M,et al.Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian Orogenic Belt along the South Tianshan suture zone[J].Lithos,2016b,246-247:1-12.
[45] Li N B,Niu H C,Shan Q,et al.Two episodes of late Paleozoic A-type magmatism in the Qunjisayi area, western Tianshan:Petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences,2015,113:238-253,
[46] Huang Hu, Peter A, Cawood,et al.Provenance of late Paleozoic strata in the Yili Basin:Implications for tectonic evolution of the South Tianshan orogenic belt[J].Geological Society of America Bulletin,2017,130( 5/6):952-974.
[47] 侯可軍,李延河,田有荣.LA-MC-ICP-MS 锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
[48] Andersen T.Correction of common lead in U-Pb analyses that do not report Pb-204[J].Chemical Geology,2002.192,59-79.
[49] Ludwig K R,ISOPLOT 3.0,a geochronological toolkit for Microsoft Excel.Berkeley Geochronological[J]Centre Special.Publication,2003.4:71.
[50] Lund K,Aleinikoff J N,Evans K V,et al.SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup,central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits[J].Geological Society of America Bulletin,2003,115(3):349-372.
[51] Li X H,Li Z X,Wingate M T D,et al.Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?[J].precambrian research,2006,146(1-2):0-15.
[52] Zhang C L,Zou H B,Wang H Y,et al.Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block,NW China:Interaction between plate subduction and mantle plume?[J].Precambrian Research,2012:222-223.
[53] Zhu W,Zheng B,Shu L,et al.Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane,northwestern Tarim,China:Insights from LA-ICP-MS zircon U-Pb ages and geochemical data[J].precambrian research,2011,185(3-4):0-230.
[54] Zheng B,Zhu W,Jahn B M,et al.Subducted Precambrian oceanic crust:geochemical and Sr-Nd isotopic evidence from metabasalts of the Aksu blueschist,NW China[J].Journal of the Geological Society,2010,167(6):1161-1170.
[55] Ordovician eclogites from the Chinese Beishan:implications for the tectonic evolution of the southern Altaids[J].Journal of Metamorphic Geology,2011,29(8):803-820.
[56] Li Z X,Evans D A D,Halverson G P.Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J].Sedimentary geology,2013,294:219-232.
[57] Wang B,Faure M,Shu L,et al.Structural and Geochronological Study of High-Pressure Metamorphic Rocks in the Kekesu Section(Northwestern China):Implications for the Late Paleozoic Tectonics of the Southern Tianshan[J].The Journal of Geology,2010,118(1):59-77.
[58] Yin J Y,Chen W, Xiao W,et al.Geochronology,petrogenesis, and tectonic significance of the latest Devonian-early Carboniferous I-type granites in the Central Tianshan, NW China[J].Gondwana Research, 2017.
[59] Ren R,Han B F,Ji J Q,et al.U-Pb age of detrital zircons from the Tekes River,Xinjiang,China,and implications for tectonomagmatic evolution of the South Tian Shan orogeny[J].Gondwana Research,2011,19:460-470.
[60] Hegner E,Klemd R,Kr?ner A,et al.Mineral ages and P-T conditions of Late Paleozoic highpressure eclogite and provenance of mélange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan[J].American Journal of Science,2010,310:916-950.
[61] Klemd R,Gao J, Li J L,et al.Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt):geodynamic implica tions[J].Gondwana Research,2015,28:1-25.
[62] Xia B,Zhang L F,Bader T, et al.Late Palaeozoic 40Ar/39Ar ages of the HP-LT metamorphic rocks from the Kekesu Valley,Chinese southwestern Tianshan:New constraints on exhumation tectonics[J].International Geology Review,2016,58:389-404.
Abstract:Intend to understand the evolutionary history of the South tianshan ocean,in this paper,through U-Pb isotope of detrital zircons from Weigan river in the southern slope of South Tianshan orogenic belt shows two prominent age populations at 460~400 Ma and 310~260 Ma,and subordinate Precambrian ages 660~610 Ma and 830~760 Ma,but no Mesozoic and Cenozoic grains were detected.These results,combined with age data from modern rivers in northern slope of South Tianshan orogenic belt,comparisons shows: at the middle Neoproterozoic(830~610Ma),super continent breakup,and the south tianshan ocean opened;the 460~400 Ma(Late Ordovician to Middle Devonian) age population substantiate the existence of Early Palaeozoic continental arc magmatism due to double-sided subduction of the South Tianshan Ocean;while the 380~320 Ma(Late Devonian to Middle Carboniferous)events were related the northward subduction of the South tianshan ocean;the 310~260 Ma (Late Carboniferous to Early Permian)magmatic event is thought to the closure of the South and concomitant post-collision magmatic tectonic activity.
Key words:Detrital zircon;South Tianshan Orogenic Belt;Age spectra;Paleozoic magmatism;Evolution history