活用类比猜想 巧解折叠探究
2020-09-10李培华
李培华
与特殊四边形有关的折叠问题是中考的热点,中考数学倒数第二题中屡屡能见到此类问题的身影. 此类问题变化多、综合性强,因此难度较大. 下面举例介绍如何活用类比猜想来解决此类问题.
例(2019·湖北·襄阳)(1)证明推断:如图1①,在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.
①求证:DQ = AE;
②推断:的值为 .
(2)类比探究:如图1②,在矩形ABCD中, = k(k为常数). 将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O. 试探究GF与AE之间的数量关系,并说明理由.
(3)拓展应用:在(2)的条件下,连接CP,当k = 时,若tan∠CGP = ,GF = 2,求CP的长.
分析:(1)①由正方形的性质易得∠QAO = ∠ADO,进而有△ABE≌△DAQ,可得DQ = AE;②证明四边形DQFG是平行四边形即可解决问题. (2)结论: = k. 如图2,作GM⊥AB于M,证明△ABE∽△GMF即可解决问题. (3)如图3,作PM⊥BC交BC的延长线于M. 利用相似三角形的性质求出PM,CM即可解决问题.
解:(1)①∵四边形ABCD是正方形,∴DA = AB,∠DAQ = 90° = ∠ABE. ∴∠QAO + ∠OAD = 90°.
∵AE⊥DQ,∴∠ADO + ∠OAD = 90°. ∴∠ADO = ∠QAO.
∴△DAQ≌△ABE(ASA),∴DQ = AE.
②結论: = 1. 理由:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,
∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG = DQ,
∵AE = DQ,∴FG = AE,∴ = 1.
(2)结论: = k. 理由:如图2,作GM⊥AB于M.
∵AE⊥GF,∴∠AOF = ∠GMF = ∠ABE = 90°,
∴∠BAE + ∠AFO = 90°,∠AFO + ∠FGM = 90°,
∴∠BAE = ∠FGM,
∴△ABE∽△GMF,∴ = ,
∵∠AMG = ∠D = ∠DAM = 90°,
∴四边形AMGD是矩形,∴GM = AD,
∴ = = = k.
(3)如图3,作PM⊥BC交BC的延长线于M.
∵FB∥GC,FE∥GP,∴∠CGP = ∠BFE,
∴tan∠BFE = tan∠CGP = = ,
∴设BE = 3k,BF = 4k,则EF = AF = 5k,AB = AF + BF = 9k,
∵ = ,FG = 2,∴AE = 3,
∴(3k)2 + (9k)2 = (3)2,
∴k = 1或-1(舍弃),∴BE = 3,AB = 9,
∵ = ,∴BC = 6,
∴BE = CE = 3,AD = PE = BC = 6,
∵∠FBE = ∠FEP = ∠PME = 90°,
∴∠FEB + ∠PEM = 90°,∠PEM + ∠EPM = 90°,
∴∠FEB = ∠EPM,∴△FBE∽△EMP,∴ = = ,
∴ = = ,∴EM = ,PM = ,
∴CM = EM - EC = - 3 = ,∴PC = = .
点评:解决(2)(3)问的关键是类比其与第(1)问的相似之处,迁移第(1)问的思路进行合理猜想.