傅里叶变换的性质探讨
2020-08-14张平
张平
摘 要:傅里叶变换在信号处理中起着至关重要的作用,而傅里叶变换的性质又是同学们学习的难点。该文详细地研究了傅里叶变换的对偶性质,利用对偶性质、平移性质、微分性质和卷积定理得到了一些复杂信号的傅里叶变换,揭示了傅里叶变换各个性质之间的关系,这将使同学们更能灵活地掌握并运用傅里叶变换的各种性质进行信号处理,同时对信号与系统的学习提供技术支撑
关键词:傅里叶变换 对偶性 频域平移 卷积定理
中图分类号:O172.2 文献标识码:A 文章编号:1672-3791(2020)06(c)-0255-02
Abstract: Fourier transform plays an important role in signal processing, and the properties of Fourier transform are difficult for students to learn. In this paper, the dual properties of Fourier transform are studied in detail.By using the dual properties, translation properties, differential properties and convolution theorem,the Fourier transform of some complicated signals is obtained, and the relationship between various properties of Fourier transform is revealed. So that students can more flexibly grasp and use the various properties of Fourier transform for signal processing, and provide technical support for the study of signal and system.
Key Words: Fourier transform; Duality; Frequency domain translation; Convolution theorem
1 引言
傅里叶变换[1-6]是大学生学习的难点,灵活掌握傅里叶变换的性质至关重要,该文就此问题进行了深入探讨,总结了一些典型例题,希望对《信号与系统》等课程的学习有所裨益。
2 傅里叶变换的性质应用
傅里叶变换与逆变换之间存在着对偶性,利用对偶性可以得到许多信号的傅里葉变换。
参考文献
[1] 贾晓峰.微积分与数学模型(上册)[M].3版.北京:高等教育出版社,2015:400-427.
[2] 同济大学数学系.高等数学(下册)[M].7版.北京:高等教育出版社,2014:307-327.
[3] 贾云涛.复变函数与积分变换[M].7版.北京:清华大学出版社,2018:47-67.
[4] 华中科技大学数学与统计学院.复变函数与积分变换[M].4版.北京:高等教育出版社,2013:183-212.
[5] 贾君霞.复变函数与积分变换[M].西安:西安电子科技大学出版社,2017.
[6] Nakhle H.Asmar.Partial Differential Equations with Fourier Series and Boundary Value Problems[M].2nd Section.Prentice Hall,2004.