新疆西准噶尔萨吾尔地区早石炭世埃达克岩地球化学特征、岩石成因及其意义*
2020-08-11李海李永军徐学义杨高学王祚鹏徐倩宁文涛
李海 李永军, 2** 徐学义, 3 杨高学, 2 王祚鹏 徐倩 宁文涛
1. 长安大学地球科学与资源学院,西安 7100542. 自然资源部岩浆作用成矿与找矿重点实验室,西安 7100543. 中国自然资源航空物探遥感中心,北京 100083
埃达克岩(Adakite)是最早发现于阿留申群岛Adak岛的一类特殊的中酸性富钠火成岩组合(Defant and Drummond, 1990),具有俯冲洋壳部分熔融组分特征(Defant and Drummond, 1993; Yogodzinskietal., 1995)。其地球化学特征表现为:SiO2≥56%,A12O3≥15%,MgO<3%,贫Y(≤18×10-6)、Yb(≤1.9×10-6),高Sr(>400×10-6)和Sr/Y比值(>20~40),LREE富集,HREE平坦,Eu正异常(Defant and Drummond, 1990; Castillo, 2012)。埃达克岩由于独特的岩浆来源、地球动力学意义以及与Cu-Au等金属矿床的密切关系而备受研究者的关注(Drummond and Defant, 1990; 张旗等, 2001, 2002; Sunetal., 2010; Zhangetal., 2017)。
新疆北部地区位于中亚造山带西南缘,构造上处于西伯利亚板块、哈萨克斯坦板块和塔里木板块的接触地带(Windley and Xiao, 2018;engöretal., 2018; 肖文交等, 2019),受控于古亚洲洋多旋回开合演化,经历了复杂的构造演化过程(Xiaoetal., 2015, 2018),从北到南依次发育阿尔泰造山带、准噶尔地体周缘造山带以及天山造山带(徐学义等, 2014)。各造山带内发育大量古生代岩浆岩(韩宝福等, 2006; Gengetal., 2009; Chenetal., 2010; Yinetal., 2017; Yangetal., 2019),为研究这一地区构造格局与演化提供了良好的物质基础。
多年来,学者们在西天山北部(王强等, 2006; Wangetal., 2007a, 2020)、东天山(张连昌等, 2004; 熊小林等, 2005; Zhangetal., 2006)、东准噶尔北缘(许继峰等, 2001; 牛贺才等, 2009; 黄岗等, 2016)以及阿尔泰南缘(杨文平等, 2005; 赵振华等, 2006, 2007; 张海祥等, 2004, 2008)等地陆续发现大量埃达克岩,时代跨度为晚志留世-中晚二叠世,其中既有与板块俯冲有关的O型埃达克岩,也有与地壳加厚有关的C型埃达克岩(赵振华等, 2006; 张旗, 2011; 许继峰等, 2014)。在西准噶尔南部包古图一带(张连昌等, 2006; 唐功建等, 2009; Shenetal., 2009; Tangetal., 2010; 尹继元等, 2016)和扎依尔山阔依塔斯地区(段丰浩等, 2015)也报道了一些与Cu-Au矿有关的埃达克岩,与其共生的有A型花岗岩、紫苏花岗岩和富镁闪长岩等代表高温和拉张环境的特殊岩石组合,并认为其形成可能与这一地区晚石炭世洋脊俯冲有关(Gengetal., 2009; Tangetal., 2010; Yinetal., 2010)。在西准噶尔北部地区埃达克岩的报道则相对较少,王金荣等(2013)对博什库尔-成吉斯岩浆弧南缘的早泥盆世含铜花岗闪长岩和花岗闪长斑岩进行了研究,发现岩石具有埃达克岩的地球化学特征,认为是早泥盆世早期库吉拜-和布克赛尔及洪古勒楞蛇绿岩带所代表的古大洋向南俯冲的玄武质洋壳部分熔融的产物。
西准噶尔北部扎尔玛-萨吾尔火山弧内广泛发育晚古生代中酸性侵入岩和火山岩以及少量镁铁-超镁铁岩体(Chenetal., 2010; Gengetal., 2011; Shenetal., 2013),前人对这一地区岩浆岩岩石学、年代学、地球化学等方面展开大量研究(Zhouetal., 2007; Chenetal., 2010; Shenetal., 2013; 袁峰等, 2015),对萨吾尔地区石炭纪构造背景存在岛弧(Gengetal., 2011; Yangetal., 2014)和后碰撞环境(韩宝福等, 2006; 袁峰等, 2006; Zhouetal., 2008)等争议。这些认识上的差异很大程度上制约了西准噶尔地区区域构造演化、成矿作用等的深入探索。同样,萨吾尔地区埃达克岩鲜有报道,仅Yinetal. (2015)发现了萨吾尔火山弧西北缘的早石炭世埃达克质闪长岩脉,并认为其成因模式与西准噶尔南部包古图地区的埃达克岩明显不同,可能是平俯冲所导致的板片异常加热而形成。此外,整个西准噶尔地区现有的埃达克岩均为花岗质或闪长质的中酸性侵入岩体(脉),而未见与之对应的火山熔岩。
作者们通过详细的野外地质调查,对西准噶尔北部萨吾尔地区黑山头一带原黑山头组进行重新厘定,将该组上部的一套火山岩从中解体,新建为阿克塔木组(另文报道)。通过对该套地层的LA-ICP-MS锆石U-Pb年代学及地球化学特征研究,确定其为早石炭世岛弧火山岩,具典型的埃达克岩特征。结合前人在西准噶尔地区的相关研究成果,深入剖析了岩石成因及其形成时可能的构造背景,为西准噶尔地区晚古生代岩浆活动、区域构造演化以及Cu-Au成矿研究提供了可靠的地质证据。
1 区域地质背景
西准噶尔地区是指位于准噶尔盆地西北部,夹持于额尔齐斯-斋桑缝合带和天山缝合带之间的中国境内区域(图1a)。北界额尔齐斯-斋桑缝合带是额尔齐斯-斋桑洋板片在泥盆纪-早石炭世期间向南北两侧的哈萨克斯坦和阿尔泰板块之下俯冲,最终于晚石炭时期洋盆闭合、板块完成碰撞的产物(Windleyetal., 2007; Chenetal., 2010; Hanetal., 2010)。南界北天山缝合带是西准噶尔与天山造山带拼贴的位置,是早-晚石炭世北天山洋闭合,准噶尔与伊犁地块最终碰撞的产物(Hanetal., 2010)。中间的西准噶尔造山带由一系列增生杂岩、蛇绿岩和古生代岩浆弧组成(Xiao and Santosh, 2014; Kröneretal., 2017; Xiaoetal., 2015, 2018; Yangetal., 2015, 2019),记录了古亚洲洋在西准地区扩张、俯冲和地体拼贴碰撞的全过程。
以谢米斯台断裂为界,依据物质组成及构造属性差异,将西准噶尔增生造山带划分为南北两部分,南部受北西、北东走向断裂控制,由晚古生代火山沉积岩系、蛇绿岩带等增生杂岩、花岗质侵入岩和中-基性岩墙组成(尹继元等, 2011; Chenetal., 2010, 2015)。北部被近东西向断裂控制,以发育古生代沉积-火山碎屑岩系及火山弧拼贴、碰撞为特征,主要包括早古生代博什库尔-成吉思火山弧和晚古生代扎尔玛-萨吾尔火山弧(Chenetal., 2010)(图1a);前者由志留纪-早石炭世火山岩以及晚志留世-早泥盆世、晚石炭世-早二叠世侵入岩组成(Chenetal., 2010; Shenetal., 2012; 尹继元等, 2013; Yinetal., 2015);后者被认为是其北部额尔齐斯-斋桑洋在晚古生代向南俯冲的产物(Windleyetal., 2007; Chenetal., 2010),主要由泥盆纪-早石炭世弧火山岩和侵入其中的早石炭世的I型花岗岩、闪长质岩墙以及早二叠世的碱性花岗岩组成(陈家富等, 2010; 尹继元等, 2013; Yinetal., 2015),并广泛发育与早石炭世中酸性岩有关的Cu-Au矿床。
研究区位于萨吾尔地区黑山头一带,处于扎尔玛-萨吾尔火山弧带内(图1b),区内主要出露泥盆-石炭纪火山-沉积地层(图1c)。包括中泥盆统查干山组、胡吉尔斯特组、萨吾尔山组;上泥盆统塔尔巴哈台组;石炭统巴塔玛依内山组;下石炭统黑山头组、阿克塔木组和那林卡拉组。本文的阿克塔木组为一套中性火山熔岩、火山碎屑岩夹酸性火山熔岩,其下伏黑山头组为滨-浅海相陆源碎屑岩+生物灰岩组合,前人多有早石炭世化石采获。本次在黑山头组顶部也采集到腕足类Dictyoclostusderuptusquadrates,Spirifergapeevi,Compositamegala;珊瑚类Zaphrentitescf.quadransi,Multithecoporasp.等早石炭世杜内期化石。
图1 研究区地质简图
阔尔真阔拉断裂呈NEE向横穿研究区,断裂以南地层总体呈向斜产出,断裂以北地层多被次级小断裂分割。区内侵入岩发育,主要为华力西期的花岗闪长岩、花岗闪长斑岩组成的小岩体,以及石英闪长岩等中酸性岩脉(袁峰等, 2015)。研究区附近分布有阔尔真阔拉、罕哲尕能、黑山头等Cu-Au矿床(点)(Shenetal., 2008; 袁峰等, 2015)。
2 阿克塔木组地质及岩石学特征
剖面实测表明,黑山头一带阿克塔木组总体为一套中性火山熔岩、火山碎屑岩夹酸性火山熔岩建造。主要岩性为溢流相的安山岩;爆发相的集块岩、火山角砾岩、晶屑凝灰岩;火山管道相的安山质角砾熔岩以及流纹岩、石英霏细岩等(图2)。剖面上阿克塔木组各层与层之间均为喷发整合接触,底部表现为一较完整的火山机构,剖面最底部发育破火山口,由火山口中心向外,岩性呈现有规律性的变化:0~60m为火山集块岩,砾径30~110cm;60~90m为角砾集块岩,砾径5~15cm;90~140m为火山角砾岩,砾径1~6cm;140~230m为晶屑凝灰岩。通道相的集块岩间隙和缝隙被安山岩灌入胶结,其中,火山口中心的集块岩、安山岩出露较少,延伸较短,沿集块岩向外辐射,火山碎屑岩粒径逐渐变细。总体而言,剖面上阿克塔木组由四个火山喷发旋回组成,各旋回均始于爆发相终于溢流相。本组与下伏黑山头组呈喷发不整合接触,与上覆那林卡拉组呈整合接触(本次剖面上呈断层接触)。
岩相学研究表明,安山岩新鲜面为灰褐色,斑状结构,杏仁状构造(图3a-c),斑晶(40%~45%)主要是斜长石和普通角闪石;斜长石主要为中长石、更长石,呈板状或柱状,杂乱分布,粒度一般为0.2~0.4mm,发育聚片双晶,发生绢云母化和绿帘石化;角闪石为褐色,呈自形-半自形,粒度约0.1~0.3mm,部分已绿泥石化;基质为隐晶质及少量磁铁矿和斜长石微晶(图3d)。流纹岩为红褐色,少斑状结构,基质为霏细-微晶结构,流纹构造发育(图3e)。斑晶可见石英、钾长石和少量钠长石;钾长石呈他形粒状或柱状,粒径0.2~0.4mm,发生高岭土化、绢云母化;钠长石呈半自形板状,粒径0.2~0.6mm;石英斑晶呈他形粒状,粒径0.5~0.8mm;基质主要由细小长英质矿物组成,霏细-微晶状,发生黏土化和碳酸盐化(图3f),可见少量的磁铁矿等副矿物。
图3 阿克塔木组火山岩野外与镜下照片(a)安山岩野外宏观露头;(b)安山岩近照;(c)安山质火山角砾岩近照;(d)安山岩正交偏光镜下特征;(e)流纹岩近照;(f)流纹岩正交偏光镜下特征.Pl-斜长石;Kf-钾长石;Hbl-角闪石;Qtz-石英;Mt-磁铁矿Fig.3 Macroscopic and microscopic photos of the volcanic rocks from Aketamu Formation(a) macroscopic distribution of andesite in the field; (b) close photo of andesite with almond; (c) close photo of andesitic volcanic breccia; (d) microscopic photo of andesite under cross-polarized; (e) close photo of rhyolite; (f) microscopic photo of rhyolite under cross-polarized. Pl-plagioclase; Kf-K-feldspar; Hbl-hornblende; Qtz-quartz; Mt-magnetite
用于LA-ICP-MS锆石U-Pb测年的流纹岩样品采自剖面第5层。在剖面上采集了安山岩和少量安山质火山碎屑岩样品(图2),进行岩石地球化学分析。根据显微岩相学观察,所采用样品均为有代表性的无蚀变或弱蚀变样品。
图2 阿克塔木组实测地质剖面图Fig.2 Measured geological profile of Aketamu Formation
3 分析方法
锆石分选由廊坊市诚信地质服务有限公司采用常规重液浮选和电磁分离法进行,然后在双目镜下挑选出具有代表性的锆石进行制靶和抛光,并完成锆石透射光、反射光和阴极发光(CL)照相,避开锆石内裂隙、包裹体和重结晶的部分,选择同位素分析的最佳位置,确保点位直径大于32μm。
锆石的激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位U-Pb定年在中国地质调查局西安地质调查中心自然资源部岩浆作用成矿与找矿重点实验室完成。实验激光剥蚀系统为GeoLas Pro,ICP-MS为Agilent 7700X。每组12个点分析,采用NIST-610、91500外标和GJ内标的分析方法,详细仪器参数和测试过程参考李艳广等(2015)。数据离线处理采用Glitter 4.4,锆石U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot(ver3.0)完成(Ludwig, 2003)。
主、微量元素测试在长安大学西部矿产资源与地质工程教育部重点实验室完成。岩石样品在室内先去除风化面,手工碎至1~5mm,去除杏仁体后轮流用稀硝酸与稀盐酸浸泡清洗, 烘干后用不锈钢钵粉碎至200目用于化学分析。主量元素分析采用LAB CENTER XRF-1800型X射线荧光光谱(XRF)分析完成,XRF溶片法按照国家标准GB/T 14506.28—1993执行,元素分析误差小于2.5%,氧化物总量介于99.75%~100.25%,烧失量(LOI)在烘箱中经1000℃高温烘烤90min后称重获得。微量元素采用Thermo-X7电感耦合等离子体质谱仪进行样品测定,仪器工作参数:功率:1200W,雾化器气体:0.64L/min,辅助气体:0.80L/min,等离子气体:13L/min。
4 分析结果
4.1 锆石U-Pb年代学
用于同位素定年分析的锆石为浅黄色-无色,透明-半透明,自形程度高,多呈正方双锥晶体及半截锥状,长约80~140μm,长宽比值为1:1~2:1(图4a)。CL图像可见振荡环带和明暗相间的条带状结构(图4a),为岩浆结晶锆石(吴元保和郑永飞, 2004)。
图4 阿克塔木组流纹岩中锆石阴极发光图像(a)和锆石U-Pb年龄谐和图(b)Fig.4 CL images and analyzed points of zircons (a) and concordia diagrams of zircon U-Pb ages (b) of rhyolite from Aketamu Formation
样品锆石年龄测试最终获得了19个有效数据(表1),锆石的Th(65.30×10-6~3358×10-6)、U(153.8×10-6~2776×10-6)含量普遍较高,Th/U比值范围为0.42~1.46,均大于0.40,且呈现出良好的正相关,进一步表明为岩浆成因锆石。本次获得的锆石206Pb/238U年龄值较集中(334.5~341.5Ma),加权平均年龄为337.9±0.77Ma(MSWD=0.92,置信度95%)(图4b),代表了样品结晶年龄。
研究区附近广泛分布与Cu-Au矿床有关的中酸性岩组合,综合分析认为与本次厘定的安山岩-流纹岩组合同属阿克塔木组,成岩成矿时代均为早石炭世(刘国仁等, 2003; 郭正林等, 2010; 袁峰等, 2015; 陈思思等, 2017)。前人及本次研究在阿克塔木组下伏黑山头组地层中采获丰富的腕足类、珊瑚类等早石炭世杜内期化石。结合阿克塔木组与下伏黑山头组地层呈喷发不整合接触关系,进一步确认本组地层时代为早石炭世维宪期。
4.2 元素地球化学特征
图5 阿克塔木组安山岩硅-碱(TAS)岩石分类图(a,据Middlemost, 1994)和SiO2-K2O图(b,据Ewart, 1982)Fig.5 TAS diagram (a, after Middlemost, 1994) and SiO2 vs. K2O diagram (b, after Ewart, 1982) for andesites from Aketamu Formation
表2 阿克塔木组安山岩主量元素(wt%)、微量和稀土元素(×10-6)含量分析结果
阿克塔木组安山岩稀土元素含量中等(∑REE=75.74×10-6~115.4×10-6),轻稀土元素(LREE)相对富集且分馏程度较好 (La/Sm)N=2.6~3.9,重稀土元素(HREE)相对平坦(Gd/Yb)N=1.7~2.8,LREE/HREE分异较明显(La/Yb)N=5.8~17.2,具弱的Eu正异常(δEu=0.99~1.25)(图6a), 表明原始岩浆演化过程中未经历明显的斜长石分离结晶作用。在原始地幔标准化微量元素蛛网图中,大离子亲石元素(LILE)Rb、Ba、Th、U、K、Pb和Sr富集,高场强元素(HFSE)Nb、Ta和Ti明显亏损(图6b),显示了俯冲带相关的岩浆特征。各样品具有基本一致的微量元素和稀土配分模式,指示具有同源岩浆演化特征。
图6 阿克塔木组安山岩球粒陨石标准化稀土元素配分曲线(a,标准化值据Nakamura, 1974)和原始地幔标准化微量元素蛛网图(b,标准化值据Sun and McDonough, 1989)数据来源:萨吾尔山北缘闪长岩脉(Yin et al., 2015);萨吾尔山南部安山岩(Shen et al., 2008;邓宇峰等,2014);萨吾尔山南部二长岩(陈思思等, 2017);巴尔雷克安山岩(田陟贤等, 2013);图7、图8数据来源同此图Fig.6 Chondrite-normalized REE distribution patterns (a, normalization values after Nakamura, 1974) and primitive mantle-normalized trace elements spider diagram (b, normalization values after Sun and McDonough, 1989) for andesites from Aketamu FormationData for comparison in this figure, in Fig.7 and Fig.8 from Shen et al., 2008; Tian et al., 2013; Deng et al., 2014; Yin et al., 2015; Chen et al., 2017
5 讨论
5.1 岩石成因
研究表明,蚀变作用可能导致主量元素和LILE(如K、Rb、Ba和Pb等)含量的变化,而对REE和HFSE(如Nb、Ta和Ti)的影响较小(Winchester and Floyd, 1977)。本次安山岩样品具有基本一致的稀土元素和微量元素配分曲线(图6),但是Cs、Rb等个别元素含量变化较大,另外,岩石样品烧失量低-中等(LOI=1.72%~3.86%),也说明部分样品还是受到了一定程度的后期蚀变。为进一步排除蚀变作用对分析结果的影响,在岩石成因分析、构造环境判别过程中也避免使用了蛛网图上显示含量变化较大的微量元素。
阿克塔木组安山岩具有高SiO2(53.42%~64.74%),A12O3(16.05%~19.23%)含量,富Na2O(4.05%~8.13%),强烈亏损重稀土元素(Yb=0.94×10-6~1.79×10-6,Y=8.48×10-6~16.92×10-6),富Sr(448.1×10-6~1507×10-6),高Sr/Y比值(36.6~89.0,平均为57.14),明显的Nb、Ta和Ti负异常,具有典型的埃达克岩特征(Defant and Drummond, 1990; Defantetal., 2002; Martinetal., 2005)。在Sr/Y-Y和 (La/Yb)N-YbN图解中,样品均落入埃达克岩区域(图7)。
图7 阿克塔木组安山岩Sr/Y-Y图解(a)和(La/Yb)N-YbN图解(b)(底图据Defant and Drummond, 1990; Drummond and Defant, 1990; 王金荣等, 2013)图中曲线Ⅰ-Ⅳ为MORB部分熔融的模式曲线,箭头指示部分熔融程度减小方向,线上所标数字代表熔融程度.图a中:Ⅰ-榴辉岩(石榴石/辉石=50/50);Ⅱ-角闪石榴岩(石榴石/角闪石=50/50);Ⅲ-角闪榴辉岩(角闪石/石榴石/辉石=10/40/50);Ⅳ-石榴角闪岩(石榴石/角闪石=10/90).图b中:Ⅰ-榴辉岩;Ⅱ-25%石榴石角闪岩;Ⅲ-10%石榴石角闪岩;Ⅳ-斜长角闪岩Fig.7 Plots of Sr/Y vs. Y (a) and (La/Yb)N vs. YbN (b) (base map after Defant and Drummond, 1990; Drummond and Defant, 1990; Wang et al., 2013) for andesites from Aketamu FormationCurves Ⅰ-Ⅳ in the diagrams are partial melting model curves of MORB, arrows indicate the direction of partial melting reduction, the numbers marked on the curves represent the degree of partial melting. In Fig.7a: Ⅰ-eclogite (garnet/pyroxene=50/50); Ⅱ-amphibole garnetite (garnet/amphibole=50/50); Ⅲ-amphibole eclogite (amphibole/garnet/pyroxene=10/40/50); Ⅳ-garnet amphibolite (garnet/amphibole=10/90). In Fig.7b: Ⅰ-eclogite; Ⅱ-25% garnet amphibolite; Ⅲ-10% garnet amphibolite; Ⅳ-amphibolite
目前,多种埃达克岩的成因模式被提出,主要包括:(1)俯冲洋壳的熔融(Defant and Drummond, 1990; Zhaoetal., 2008; Tangetal., 2010);(2)玄武质岩浆的结晶分异(Macphersonetal., 2006; Castillo, 2012);(3)俯冲的陆壳熔融(Wangetal., 2008; Lai and Qin, 2013);(4)增厚或拆沉下地壳熔融(张旗等, 2001, 2002; Gaoetal., 2004; 熊小林等, 2005; Wangetal., 2007b)。
如前所述,阿克塔木安山岩具有同源岩浆演化的特征,然而并没有显示出高压或低压分离结晶的趋势(图8),并具弱Eu正异常(δEu=0.99~1.25),指示未发生明显的斜长石分离结晶作用,因此,它可能不是由玄武质岩浆结晶分异而成。地壳物质由于强烈亏损Nb,高度富集Pb,而具有较低的Nb/U和Ce/Pb比值。安山岩的Nb/U(3.7~6.0)和Ce/Pb(3.5~8.4)比值与大陆地壳的范围明显不同(Nb/U=10, Ce/Pb=4, Hofmannetal., 1986)。此外,陆壳物质的参与往往造成不相容元素总体升高,而阿克塔木组火山岩的不相容元素丰度并不特别高,因此,岩浆由俯冲陆壳熔融形成可能性不大。增厚或者拆沉下地壳熔融、俯冲陆壳熔融形成的埃达克岩往往富钾贫钠(K2O>3%)(Xiao and Clemens, 2007; Wangetal., 2007b, 2008),而本次安山岩样品却富钠贫钾(Na2O/K2O=1.11~9.57),与洋壳组分类似;其高Al,低La/Ce(0.45~0.55)比值,也与俯冲板片熔融机制一致(Defant and Drummond, 1990, 1993; Drummondetal., 1996; Martin, 1999)。
图8 阿克塔木组安山岩SiO2对La (a)、Ba (b)、Dy/Yb (c)和Na2O (d)图解高压分离结晶趋势线据Macpherson et al., 2006;低压分离结晶趋势线据Castillo et al., 1999Fig.8 Plots of SiO2 against La (a), Ba (b), Dy/Yb (c) and Na2O (d) for andesites from Aketamu FormationHigh-pressure fractional crystallization lines after Macpherson et al., 2006; low-pressure fractional crystallization lines after Castillo et al., 1999
研究表明,玄武质岩浆底侵作用导致下地壳部分熔融以及拆沉下地壳部分熔融形成的埃达克岩,一般具高Mg#和高相容元素Cr、Co、Ni等幔源岩浆特征(Yogodzinskietal., 1995; Martin, 1999; Gaoetal., 2004)。本文分析样品具较低的Cr、Co、Ni含量,与角闪岩或榴辉岩实验形成的熔体中这些元素的低浓度基本一致(Rappetal., 1991)。相对低的MgO(0.75%~3.50%)和Mg#(24.97~47.08),与MORB部分熔融产生的熔体相似(Rapp, 1997; Defantetal., 2002),仅部分样品Mg#和Cr、Co、Ni值偏高,暗示俯冲板片形成的熔体可能与地幔楔发生轻微的熔体-岩石反应(Defant and Drummond, 1990; 张海祥等, 2004)。由此可见,阿克塔木组安山岩样品为由亏损地幔演化而来的俯冲洋壳部分熔融的产物。
岩石具高Sr,低Y、Yb,无明显Eu异常,亏损HFSE(Ta、Nb和Ti)和HREE,低Mg#,表明源区无斜长石残留,而是由角闪石+石榴石以及辉石、Fe-Ti氧化物、金红石等组成。由于石榴子石相对富集HREE,角闪石主要富集MREE(Green, 1994),可利用Y/Yb及(Ho/Yb)N比值来鉴别源区的残留相。当Y/Yb>10且(Ho/Yb)N>1.2时,具有较为倾斜的HREE配分型式,主要残留相为石榴子石;当重稀土分布比较平坦,即Y/Yb≈10且(Ho/Yb)N≈1时,则表明角闪石可能为主要的残留相(Huetal., 2014)。安山岩的Y/Yb和(Ho/Yb)N比值分别为8.1~10.7(平均9.3)和1.0~1.2(平均1.1),因此,其源岩大致相当于变质的石榴角闪岩(Castillo, 2006)。Sr/Y-Y、(La/Yb)N-YbN图解同样显示样品均落在埃达克岩域内的俯冲洋壳部分熔融的石榴角闪岩曲线上,两图一致显示角闪石占源区残留相的绝大部分(石榴石/角闪石=10/90),且熔融程度较高(图7)。相对较高的Th/Yb值及低Ba/La表明岩浆源区可能有少量俯冲沉积物的加入,而俯冲流体的作用不明显(Woodheadetal., 2001)。
综上所述,阿克塔木组安山岩是玄武质洋壳在石榴角闪岩相高度部分熔融的产物,岩浆源区可能有俯冲沉积物的加入,岩浆上升过程中没有经历斜长石分离结晶,埃达克岩熔体与地幔橄榄岩发生了弱的交代作用后形成埃达克岩。
5.2 构造环境
同位素测年及相邻地层古生物资料确认阿克塔木组火山岩为早石炭世。西准噶尔北部萨吾尔地区发育较多的早石炭世中酸性侵入岩以及火山岩(Chenetal., 2010; Gengetal., 2011; Shenetal., 2013; 王金荣等, 2013; Yangetal., 2014),然而对于该地区石炭纪构造环境仍存在不同认识。如:岛弧(Gengetal., 2011; Yangetal., 2014)、弧后盆地(Shenetal., 2013)、洋内弧(Gengetal., 2009; Yinetal., 2010; Zhangetal., 2011; Shenetal., 2009, 2013; 邓宇峰等, 2014)和后碰撞(韩宝福等, 2006; 袁峰等, 2006; 范裕等, 2007; Zhouetal., 2007, 2008)等,这些认识上的不统一严重阻碍了区域构造演化的深入研究。
在微量元素蛛网图中(图6b),阿克塔木组火山岩富集LILE和LREE,亏损HFSE,是消减带岩浆的典型特征,反映岩浆形成于与俯冲有关的陆缘环境或岛弧环境(Pearce and Peate, 1995)。尽管陆壳的物质组成具有与消减带岩浆相似的地球化学特征(Rudnick and Gao, 2003),陆壳物质的参与可以使板内或后碰撞等环境的岩浆具有以上特征,但如前所述,这一机制发生的可能性不大。抗蚀变元素比值显示,阿克塔木组火山岩的Ta/Yb、Th/Zr值相对较低,而Th/Ta、Ba/Nb值则较高,显示其具岛弧火山岩特征(Ajajietal., 1998)。同时,Hf/Ta(6.4~9.9)、La/Ta(30.7~51.3)和低的TiO2(0.60~0.94)亦显示其与岛弧火山岩相似,表明其可能形成于岛弧环境,暗示有洋壳俯冲作用的存在。
扎尔玛-萨吾尔岩浆弧北侧的额尔齐斯-斋桑缝合带内的察尔斯克蛇绿岩中硅质岩含大量晚泥盆-早石炭世放射虫和牙形石化石(Iwataetal., 1997),说明早石炭世额尔齐斯-斋桑洋仍然存在,并向其南北两侧的哈萨克斯坦和阿尔泰板块之下俯冲(Windleyetal., 2007; Chenetal., 2010; Hanetal., 2010)。前人及本次研究在阿克塔木组下伏黑山头组地层中发现早石炭世海相化石,也说明研究区这一时期为大洋环境。萨吾尔地区呈带状分布的钙碱性系列的I型花岗岩(Zhouetal., 2008; Chenetal., 2010; 王金荣等, 2013; 尹继元等, 2013),年龄集中于324~337Ma(袁峰等, 2006; 范裕等, 2007; Zhouetal., 2008; Chenetal., 2010),具有火山弧花岗岩的特征,指示它们为岛弧构造背景下的产物(尹继元等, 2013)。萨吾尔山向东乌伦古湖附近(图1b),早石炭世辉长岩与闪长岩具有弧岩浆地球化学特征(王瑞和朱永峰, 2010);扎尔玛-萨吾尔火山弧北缘的早石炭世闪长岩脉(图1b),被认为是岛弧环境下板块俯冲的产物(Yinetal., 2015)。萨吾尔地区南部研究区附近的阔尔真阔拉、布尔克斯岱Cu-Au矿床赋矿中基性围岩组合(Shenetal., 2008; 邓宇峰等, 2014),以及与塔斯特、罕哲尕能Cu-Au矿床、黑山头Au矿点相关的中酸性岩(范裕等, 2007; 郭正林等, 2010; 陈思思等, 2017),均具有岛弧岩浆岩的地球化学特征,成岩年龄为340Ma左右(袁峰等, 2015);综合分析认为,萨吾尔地区南部这些与Cu-Au矿床有关的火山岩与本次厘定的安山岩-流纹岩组合同属早石炭世阿克塔木组,它们均形成于和洋内俯冲有关的岛弧环境。
实验岩石学研究表明,埃达克岩的形成通常需要高的温压条件(P=1.5~2.5GPa,T=850~1050℃, Xiong, 2006)。大多数俯冲环境具有较低的地热梯度,只发生俯冲板片脱水作用形成正常的岛弧火山岩,而不会发生板片熔融(Tatsumi, 2008)。本次研究表明,萨吾尔地区黑山头一带早石炭世阿克塔木组火山岩为典型的埃达克岩,是洋壳部分熔融的产物。萨吾尔火山弧北缘的早石炭世闪长岩脉也具有埃达克岩地球化学特征(Yinetal., 2015)(图6、图7);前人报道的西准噶尔巴尔雷克一带阿克塔木组(原黑山头组)部分安山岩与埃达克岩类似(田陟贤等, 2013)(图6、图7),并有同期的富Nb玄武岩发现(李永军等, 2014)。值得注意的是,萨吾尔山南部研究区附近黑山头金矿点的赋矿二长岩与埃达克岩地球化学特征一致(陈思思等, 2017)(图6、图7);阔尔真阔拉、布尔克斯岱Cu-Au矿床围岩组合中部分安山岩也符合埃达克岩特征(图6、图7),并伴有少量富Nb玄武岩(Shenetal., 2008; 邓宇峰等, 2014),这些赋矿围岩时代均为早石炭世。
特殊的岩石组合表明本区在早石炭世时期具有特殊的动力学背景,即高的地热梯度,暗示本区在早石炭世发生了软流圈物质上涌。结合区域构造演化,晚古生代以来随着古亚洲洋收缩,额尔齐斯-斋桑洋板块持续向南俯冲(Windleyetal., 2007; Chenetal., 2010; Hanetal., 2010)。早石炭时期,在萨吾尔山一带洋壳俯冲到萨吾尔岛弧之下,俯冲洋壳析出的流体交代上覆地幔楔形成正常的钙碱性岛弧火山岩(图9a),并形成具有岛弧特征的I型花岗岩。在洋壳板片俯冲过程中,板片窗(slab window)的产生可能为这一地区带来异常高温,其产生的机制可能是发生板片撕裂、断离或洋脊俯冲(Bonnardotetal., 2009; Fanetal., 2015)等。高温软流圈物质通过板片窗上涌,板片窗边缘年轻和较热的板片容易发生熔融而形成埃达克岩(Stern and Kilian, 1996; Thorkelson and Breitsprecher, 2005),被埃达克质熔体交代的地幔橄榄岩部分熔融则形成富Nb玄武岩(Defant and Drummond, 1993; Virueteetal., 2007)(图9b),从而形成了本区特殊的埃达克岩+富Nb玄武岩组合。
图9 萨吾尔地区早石炭世构造模式图 (a)俯冲流体交代上覆地幔楔形成钙碱性岛弧火山岩;(b)软流圈上涌导致俯冲板片熔融形成埃达克岩Fig.9 Early Carboniferous tectonic evolution model of Sawuer area (a) mantle wedge was metasomatized by subduction fluid leading to forming calc-alkaline island arc volcanic rocks; (b) upwelling of asthenospheric mantle resulted in melting of subduction slab and forming adakite
5.3 成矿作用
板片熔融成因的埃达克岩由于其特殊的成岩机制与斑岩型Cu矿、浅成低温热液型Au、Cu矿密切相关(Defantetal., 2002),国内外大部分Cu、Au、Ag和Mo相关的低温热液型矿床和斑岩型Cu矿与埃达克岩有关(张旗等, 2001, 2002; Sunetal., 2010)。埃达克岩成矿的关键因素是角闪岩相向榴辉岩相转变过程中的脱水作用(Kay and Mpodozis, 2001),产生的大量流体有利于埃达克质岩浆的形成,俯冲板片熔体与地幔橄榄岩相互作用导致地幔中的金属硫化物分解,高温、高压、富挥发组分、较高的氧逸度和快速上升的岩浆均是成矿的重要控制因素(熊小林等, 2005; 赵振华等, 2006),使地幔岩和基性岩中Cu、Au等元素容易进入到熔体(Zhangetal., 2017)(图9b),随后在适宜的地质和物化条件下进一步富集成矿。
研究表明,西准噶尔南部包古图地区晚石炭世斑岩型Cu-Au成矿带与古大洋俯冲板块熔融有关(Zhangetal., 2006; 张连昌等, 2006; 唐功建等, 2009),前人对西准噶尔北部的扎尔玛-萨吾尔岛弧带岩浆岩的形成年代及其相关的矿床也做了大量研究工作(表3),研究表明,早石炭世时期是萨吾尔地区弧岩浆活动和Cu-Au矿床形成的高峰期,本次研究区周边分布有塔斯特、阔尔真阔拉、罕哲尕能、布尔克斯岱床、黑山头等斑岩型-浅成低温热液型Au-Cu矿床(点)(图1b),成岩成矿时代均为早石炭世(表3)。如前所述,矿床围岩组合中部分中酸性岩具有埃达克岩特征,并伴有少量富Nb玄武岩(Shenetal., 2008; 邓宇峰等, 2014; 陈思思等, 2017)。结合萨吾尔火山弧北缘早石炭世埃达克质闪长岩脉及本次黑山头一带阿克塔木组埃达克岩的发现,表明西准噶尔北部扎尔玛-萨吾尔岩浆弧的成岩成矿条件与南部包古图地区可对比,可能同样存在一条与埃达克岩有关的Cu-Au矿带,具有较好的找矿潜力。
6 结论
(1)西准噶尔北部黑山头一带阿克塔木组为一套中性火山熔岩、火山碎屑岩夹少量酸性火山熔岩建造,流纹岩LA-ICP-MS锆石U-Pb年龄为337.9±0.77Ma,形成于早石炭世。
(2)阿克塔木组安山岩主微量元素地球化学特征为富Na贫K,高Sr、Al,低的Y、Yb含量;高Sr/Y比值,富集LREE亏损HREE;弱Eu正异常,具明显的Nb、Ta、Ti负异常,与典型的埃达克岩一致,形成于与洋内俯冲有关的岛弧环境,为洋壳板片在石榴角闪岩相高度部分熔融的产物。
(3)阿克塔木组埃达克岩+富Nb玄武岩组合与早石炭世额尔齐斯-斋桑洋南向俯冲消减有关,俯冲过程中板片窗构造的产生造成高温软流圈物质上涌,加热并熔融板片窗边缘洋壳产生埃达克岩,熔体与地幔楔发生交代作用形成富Nb玄武岩。与此同时,在萨吾尔岩浆弧上产生了与埃达克岩相关的Cu-Au矿床。
致谢三位匿名审稿人对本文审阅并提出了宝贵的修改意见与建议,在此表示衷心感谢!