APP下载

智能材料在钻井液堵漏领域研究进展和应用展望

2020-07-29孙金声雷少飞白英睿吕开河柳丙善王金堂戴彩丽刘敬平

关键词:形状记忆记忆合金钻井液

孙金声, 雷少飞, 白英睿, 王 玺, 吕开河,柳丙善, 王金堂,3, 戴彩丽, 刘敬平

(1.中国石油大学(华东)石油工程学院,山东青岛 266580; 2.中国石油集团工程技术研究院有限公司,北京 102206; 3.南方海洋科学与工程广东省实验室(广州),广东广州 523936)

井漏是一种钻井施工过程中钻井液大量漏入所钻地层的现象,是常见的钻井工程恶性事故。井漏不仅耗费钻井时间,损失大量钻井液,处理不当还可能引起井塌、井喷、卡钻等井下复杂事故,甚至导致井眼报废,造成重大经济损失[1],有效解决井漏问题对于确保井下安全、提高钻井速度、节约钻井成本至关重要。当井漏发生时,最常用的方法是使用堵漏材料封堵地层漏失通道。漏失层的高温高压、位置不确定性、漏失通道复杂多样性以及钻井作业的特殊性,要求堵漏材料必须具备优良的抗温能力、承压能力和自适应封堵能力,才能满足堵漏需求[2-5]。堵漏材料包括桥接堵漏材料、高失水堵漏材料、自适应堵漏材料、复合堵漏材料等[1,6-10]。其中,桥接堵漏材料是目前最常用的堵漏材料,主要包括锯末、云母片、纤维、蛭石等[11]。桥接堵漏材料在一定程度上解决了部分井漏问题,但是存在以下不足之处:一是桥接材料粒径与地层漏失通道尺寸的匹配性差;二是桥接材料在漏失通道内架桥堆积,在压差作用下形成压实堆积体,其堆积强度在中小尺度漏失通道中容易形成,但是由于重力沉降、缝内冲刷等因素的影响,在缝宽较大、纵向较高的大裂缝尤其是溶洞中却不易驻留形成高强度封堵,导致封堵层承压能力低,易重复漏失[12-13]。针对桥接堵漏材料的上述问题,研究人员相继研发出化学固结堵漏剂、凝胶堵漏剂等多种类型堵漏剂,通过井下固结或成胶封堵漏失通道,提高对复杂井漏地层的尺度适应性,但依然具有一定的局限性,如化学固结和凝胶成胶时间不易控制、与钻井液配伍性差、高温条件下凝胶长期承压能力不足等。为了提高漏失地层承压能力和堵漏材料的适应性,堵漏材料从简单的由单一桥塞堵漏材料和自适应堵漏材料向复配型堵漏材料进行转化,有效提高了防漏堵漏成功率。但是目前的复配大多是不同材料混合使用,并没有从根本上解决各类堵漏材料对复杂地层适应性差、在漏失通道中驻留能力弱等难题,因而至今井漏事故仍未得到有效控制和消除[14-16]。智能材料是一种能感知外部刺激、进而自主判断并执行特殊功能的全新材料,它的出现将引发一次划时代和深刻的材料革命[17-20]。近年来研究人员将智能材料应用到钻井液防漏堵漏,相继研发出智能形状记忆材料、智能凝胶材料、智能分子膜材料、智能仿生材料等。笔者阐述智能形状记忆合金、智能形状记忆聚合物、智能凝胶、智能膜和智能仿生材料等智能型材料在钻井液中的作用机制以及应用现状,针对不同智能材料在钻井液中的作用机制和特点,论述智能材料用于钻井液堵漏的可行性和技术途径,提出智能材料在钻井液堵漏领域应用的技术研发方向、方法及应用前景展望。

1 智能堵漏材料研究进展

1.1 智能形状记忆材料

1.1.1 智能形状记忆合金

形状记忆合金(shape memory alloy,SMA)是指低温状态下受力产生塑性变形,升温后由马氏体相变化至奥氏体相,恢复至初始形状的合金。如图1所示,形状记忆合金具有4个临界温度:马氏体相变开始温度Ms、马氏体相变结束温度Mf、奥氏体相变开始温度As、奥氏体相变结束温度Af。形状记忆合金在温度下降至Ms时发生马氏体相变,下降至温度Mf以下时,对形状记忆合金施加应力,马氏体通过不同晶型之间界面移动,产生塑性变形。当温度升高至As时,开始由马氏体相向奥氏体相转变,当温度升高至Af以上时,形状记忆合金恢复到原来的形状[21]。

图1 形状记忆合金记忆机制示意图

自1932年美国Olander等[22]发现形状记忆合金以来,形状记忆合金已广泛应用于石油工程、医学、国防军工等众多领域。目前在石油工程领域形状记忆合金主要用于管接头、封隔器、堵漏材料等。中国石化胜利、中原等油田利用形状记忆合金管接头无需焊接[23]等优点,用其连接高压注水管线,管道承受工作压力高达35 MPa。刘克勇等[24]采用钛镍形状记忆合金作为封隔器,解决了传统采用橡胶密封圈的封隔器耐温性能差、耐压性能低和容易老化等缺点。

形状记忆合金堵漏材料是以形状记忆合金为感知、驱动、执行元件,利用记忆合金丝的相互搭接、缠绕,以水泥等材料控制外形的智能堵漏材料(图2)。王琦等[25-28]使用Ni-Ti、Cu-Zn-Al等材料研制出智能形状记忆合金堵漏材料,该智能形状记忆合金堵漏材料承压能力超过30 MPa。

图2 智能形状记忆合金堵漏材料

1.1.2 智能形状记忆聚合物

形状记忆聚合物是指具有初始形状,在外部环境刺激下,又恢复原始形状的聚合物。形状记忆聚合物可分为热致型、电致型、光致型和化学感应型等。如图3[29]所示,以热致型形状记忆聚合为例,热致型形状记忆聚合物由固定相和可逆相组成。形状记忆聚合物玻璃转化温度Tg是指其由玻璃态转变为高弹态所对应的温度。当形状记忆聚合物在玻璃转化温度Tg以上时,施加应力,发生变形;当温度降至在玻璃转化温度Tg以下时,分子链运动冻结;当温度升高至玻璃转化温度Tg以上时,可逆相得以解冻,链段很快伸展开来,恢复至初始形状。

图3 形状记忆聚合物记忆机制

自1952年Charlesby[30]首次发现聚乙烯具有形状记忆效应以来,形状记忆聚合物已被广泛应用于医疗器械、航天航空、纺织工业等行业。近年来,国内外学者开始研究将形状记忆聚合物应用于石油工程领域,部分技术已经实现了现场应用。路易斯安那州立大学Santos等[31]开展了智能膨胀支撑剂导流能力试验,数值模拟结果表明智能膨胀支撑剂的弹性模量及激活膨胀后释放的应力能显著提高裂缝导流能力。贝克休斯Osunjaye等[32]采用形状记忆聚合物研发的形状记忆防砂筛管性能优异、化学稳定性、滤失性小、抗腐蚀能力强和膨胀特性好。日本分别采用了形状记忆聚合物防砂装置和砾石充填防砂完井工具进行天然气水合物试采,结果表明相对于砾石充填防砂完井工具,形状记忆聚合物能较好地防止筛管堵塞[33]。

目前智能形状记忆聚合物堵漏材料的研发大多是以环氧树脂等材料为基础,通过与固化剂进行交联反应合成热固性聚合物,然后通过热压变形、冷却造粒等工序制备而成[34]。形状记忆聚合物激活前后形变如图4[35]所示。路易斯安那州立大学Mansour等[36-40]开展了基于热固性形状记忆聚合物的智能堵漏材料的研究,通过数值模拟和物理模拟相结合的方法,研究了形状记忆聚合物堵漏颗粒动态封堵裂缝的过程。暴丹等[35]研究了在胺类催化剂作用下,使用环氧聚合物单体与酸酐类交联剂合成了一种热致激活的形状记忆智能堵漏剂,并开展了堵漏室内实验。Knudsen等[41]使用形状记忆聚合物在沙特阿拉伯Karan油田进行了堵漏试验,成功封堵漏失层,效果优于桥接堵漏材料。形状记忆聚合物堵漏材料形状记忆程度可控、力学性能优异,因此在裂缝性地层防漏堵漏领域具有重要的应用前景。

图4 形状记忆聚合物堵漏材料

1.2 智能凝胶材料

智能高分子凝胶是受外界环境微小变化,凝胶高分子中的疏水相互作用力、亲水相互作用力、范德华力和离子间的静电作用力相互竞争,引起高分子链段的构象发生变化,最终导致相变。以温度敏感型凝胶为例,当聚合物大分子链上同时具有亲水性基团和疏水性基团时,随温度变化,亲水作用和疏水作用相互竞争,线型高分子在水溶液中会随着溶液温度的变化而发生分子链构象的变化,由伸展的无规则线团状变为蜷曲球状,如图5[42]所示。

图5 温敏凝胶相变机制图

1975年,麻省理工学院田中丰一教授发现当温度变化时,凝胶网状结构发生相转变,导致凝胶存在透明态和不透明态两种状态,由此认识到智能凝胶的存在。智能凝胶作为新型的高分子材料,具有重要的研究及应用价值,已广泛应用在软体机器人、药物工程、污水处理、组织工程以及石油工程领域。根据环境响应类别,智能凝胶可分为温度敏感型凝胶、pH敏感型凝胶、应力敏感型凝胶等。Mazied等[43]制备的N,N-二甲基氨乙基甲基丙烯酰胺-乙二醇二甲基丙烯酸酯共聚物水凝胶随着pH值的增大溶胀度逐渐降低;Aoki等[44]制备了聚丙烯酸/聚N,N-二甲基丙烯酰胺互穿网络水凝胶,该凝胶随着温度变化存在着可逆的透明—不透明、溶胀—消溶胀的相变行为;Yang等[45-48]通过动态共价酰腙键构建基于纤维素的自愈合水凝胶,具有愈合效率高(约为96%)和机械性能好等优点。

智能凝胶堵漏材料进入漏失层能根据漏层环境特点自动驻留和固化,在地层中形成“胶塞”,达到堵漏的目的。Johnson等[49]和Quinn等[50]研发了由油相中的交联剂和溶于水相中的高浓度多糖聚合物反相乳液合成的应力敏感性凝胶堵漏剂,该应力敏感性凝胶已成功应用30余井次,堵漏成功率可达75%。针对深层高温裂缝性地层钻井过程中井漏频发且严重的难题,白英睿等[51]研发了一种抗高温剪切响应型的智能凝胶堵漏新材料,该凝胶以高反应活性微凝胶为多功能有机交联剂、以电性纳米粒子为流变调控剂,具有强剪切触变响应特性,在垂向裂缝中重力沉降现象弱,抗钻井液和地层水稀释能力强,成胶强度高,可应用于封堵大裂缝和溶洞。

1.3 智能膜材料

智能膜是由多孔膜基材和能够感应外界环境刺激的聚合物功能开关两部分组成,能够根据外界环境中的物理或化学因素变化,如温度、pH、磁场等变化,改变聚合物功能开关的构象,从而改变开关膜的有效孔径和渗透性。以温度响应型智能开关膜为例,当环境温度低于低临界溶解温度时,智能膜材料分子链处于伸展构象,在多孔介质中形成膜;当环境温度高于低临界溶解温度时,智能膜材料分子链处于收缩构象,在多孔介质形成的膜消失[52]。反相感应温度响应型智能膜则正好相反,如图6[52]所示。

图6 温度响应型智能开关膜机制

20世纪80年代,科研人员开始研究能够感知和响应外界物理和化学信号的智能膜,并认识到该材料在化学分离、控制释放、人工细胞等众多领域有着重要的应用价值,进而将其作为国际膜学领域研究的新热点。利用壳聚糖的pH响应特性,Park等[53]基于壳聚糖和四乙基原硅酸盐研发了互穿网络结构的pH响应型复合膜,当pH=2.5时,壳聚糖溶胀,透膜阻力变大;当pH=7.5时,壳聚糖收缩,透膜阻力减小。Choi等[54]研发了温度响应型PNIPAM接枝开关膜。研究发现,当温度高于低临界溶解温度时,膜表面及孔表面接枝的PNIPAM变得疏水,疏水性物质吸附在膜表面及孔表面;吸附饱和之后,将温度降低至低临界溶解温度时,PNIPAM变得亲水,吸附在上面的疏水性物质分离。

美国EDIT公司研制了成膜剂FLC2000,其作用原理是通过物理化学复合作用在井壁上自适应形成封堵膜,并形成了由该成膜剂、剪切稠化堵漏剂LCP2000和润滑剂KFA组成的钻井液体系[55]。Mody等[56]进一步提出了隔离膜概念,分析了从半透膜到隔离膜的提高自适应膜效率的方法。孙金声等[57-59]研发了一种有机硅半透膜处理剂BTM-2和隔离膜剂CMJ-1和CMJ-2,在吐哈、青海等油田进行了大量现场应用,结果表明对于渗透性漏失以及微裂缝漏失地层,该成膜剂能够形成具有一定厚度、强度和韧性的自适应吸附膜,有效封堵漏失地层。

1.4 智能仿生材料

智能仿生材料是模拟生物的特性而开发出具有感知环境刺激,进行分析、处理、判断、响应的类生物智能材料。生物材料具有功能适应性、自愈合与自我复制性、防黏减阻和疏水等多功能优良特征[60]。例如,利用自然界荷叶表面的疏水性质和自清洁功能,研究的仿生超疏水性膜材料如图7[61]所示,经过仿生超疏水处理的岩心,表面覆盖了许多纳米级小颗粒,在井壁形成仿生超疏水膜状物,进而对起到高渗孔道起到封堵作用。

图7 仿生超疏水处理前后的岩心扫描电镜

21世纪以来,智能仿生材料融合生命科学、信息科学、脑与认知科学等学科,迅速拓展到包括石油工程等各个领域。智能仿生材料在石油工程中的应用,对石油工业的技术创新理念和思维产生了日益重要的影响[62]。基于仿生理念研制的智能仿生钻井液技术在稳定井壁、防漏堵漏方面发挥了重要作用。蒋官澄等[63-64]借鉴海洋生物贻贝足丝蛋白的超强黏附能力的特点,通过在聚合物主链上接枝贻贝足丝蛋白关键基团,合成了类似贻贝足丝蛋白的水溶性聚合物。该仿生聚合物在岩石表面自发固化形成致密且具有黏附性的“仿生壳”,起到维护井壁稳定的作用。另外,借鉴“砖泥”交替贝壳多层复合结构、保护内部软体动物的特点,将生物膜和桥塞堵漏技术相结合,利用桥塞堵漏将大孔隙或裂缝变为小孔隙,进而实现漏失地层有效封堵[61]。

2 智能堵漏材料应用展望

智能材料作为国际前沿学科研究领域,成果大多注重理论性和超前性,而石油工程作为应用技术行业,以油田现场需求为驱动力,应注重科研成果的实用性。因此在研究智能堵漏材料过程中,应以满足工程技术需求为目的,通过改善现有或者创造新的技术系统为手段,针对不同堵漏原理及适应性的智能堵漏材料进行科学研究及现场应用。

2.1 智能形状记忆堵漏材料

2.1.1 智能形状记忆合金堵漏材料

智能形状记忆合金堵漏材料可设计为蜷曲状态或者蜷曲合金为内核、塑性材料为外壳的形态。常温条件下,智能形状记忆合金堵漏材料粒径较小,当其随钻井液进入漏失层后,层内温度达到合金的奥氏体相变温度时,蜷曲状态的形状记忆合金发生形变,蜷曲半径增大将外壳撑破,合金之间互穿成网,破碎外壳作为堵漏颗粒镶嵌于网中,进而在漏失通道内形成强结构堆积,达到封堵漏层的目的,智能形状记忆合金材料堵漏原理如图8所示。

图8 形状记忆合金材料堵漏原理示意图

2.1.2 智能形状记忆聚合物堵漏材料

当温度低于玻璃转化温度时,智能形状记忆聚合物堵漏材料的粒径较小,可随钻井液进入漏失层,在漏失通道内形成高密度颗粒填充;当层内温度达到玻璃转化温度后,堵漏材料激活发生膨胀变形,高密度颗粒之间相互挤压充填,在漏失通道内高强度架桥堆积,进而有效封堵漏失层,如图9所示。

图9 形状记忆聚合物材料堵漏原理示意图

形状记忆智能材料具有密度低、力学性能优异、自适应架桥封堵、激活温度和时间可调节等诸多优异的性能,能显著提高裂缝承压能力。形状记忆聚合物与形状记忆合金相比,形状记忆聚合物的主要缺点是变形力较小,但是具有成本低、变形量大、赋形容易、形变恢复温度便于控制等优点。形状记忆堵漏材料到达激活温度强度较低,可能导致承压能力不足。针对上述问题,孙金声团队基于二阶段固化原理,采用形状记忆环氧树脂、常温型固化剂和潜伏型固化剂等原料,研发了具有二阶固化形状记忆智能堵漏材料,该材料可在地层激活发生形状恢复,然后引发二阶段固化,显著提高力学性能和驻留能力,进而实现漏失通道的高强度封堵。

2.2 智能凝胶堵漏材料

凝胶是常用的防漏堵漏材料之一,现场使用时有段塞堵漏和随钻堵漏两种工艺。凝胶段塞堵漏是将凝胶溶液注入漏失通道进行封堵,该工艺特点是凝胶对漏失通道充填度高,成胶后形成连续凝胶体,因而承压能力强,但缺点是堵漏周期长;凝胶随钻堵漏是将凝胶颗粒分散在钻井液中,通过在漏失通道中架桥堆积形成封堵,优点是随钻随堵、操作简便,缺点是堆积层易被冲散,承压能力低。智能凝胶堵漏工艺需要结合上述两种工艺的优点,既能做到随钻堵漏,又能实现漏失通道内形成连续凝胶体封堵强度。孙金声团队将自愈合理念引入聚合物凝胶堵漏材料,基于疏水缔合原理,以甲基丙烯酸脂、十二烷基三甲基溴化铵等为原料,研发出一种具有智能自愈合功能的凝胶材料。该凝胶可制备成不同粒径的凝胶颗粒,随钻进入漏失地层后可架桥堆积,在地层环境刺激下实现颗粒间自愈合,重新形成凝胶整体,有效提高了对漏失地层的承压封堵能力,其作用机制如图10所示。

图10 智能自愈合凝胶材料堵漏原理示意图

2.3 智能膜堵漏材料

常规钻井液成膜材料主要是利用油膜剂或成膜剂分子的物理、化学作用在基岩孔隙表面吸附形成膜状物,膜的厚度较小,在激动压力等条件下容易发生破坏,仅适用于渗透性漏失地层的封堵。智能膜堵漏材料进入地层后,在地层环境下激活后可在裂缝四周壁面胶结,形成具有较高厚度和韧性的膜层,实现裂缝的“缩缝”直至堵塞,如图11所示,进而将膜堵漏材料的适用范围扩展到微裂缝漏失地层。孙金声团队提出了利用改性强胶结智能膜封堵微裂缝地层,以及智能膜与桥接颗粒协同封堵裂缝地层的堵漏新方法,并通过室内试验证明了其可行性。

图11 强胶结智能膜材料堵漏原理示意图

2.4 智能仿生堵漏材料

智能仿生堵漏材料进入地层后,利用生物的超强黏附能力,能在岩石表面自发固化形成致密且具有黏附性的“仿生壳”,形成封堵层。智能仿生材料自适应能力强、结构稳定、抗温能力强,适用于高渗透性漏失及微小裂缝性漏失地层,其堵漏原理如图12所示。孙金声团队将仿生固壁理念与架桥封堵、自适应封堵等机制结合起来,采用智能仿生高分子材料、架桥封堵颗粒和智能自愈合凝胶粒子等,优化出一种结构一体化和功能多样化的新型仿生堵漏材料体系。

图12 智能仿生材料堵漏原理示意图

3 结束语

智能堵漏材料可智能适应各种复杂地层,力学性能优异,可显著提高堵漏效率,在钻井液防漏堵漏领域具有广阔的应用前景。智能形状记忆堵漏材料具有承压能力强、自适应架桥封堵、激活温度可调等优点,可适用于裂缝性漏失地层;智能凝胶堵漏材料具有自适能力强、配伍性好、耐冲刷能力强和良好的可降解性等优点,可适用于封堵裂缝性和溶洞性漏失地层;智能膜和智能仿生堵漏材料具有随钻封堵性能好,协同解决漏失卡钻、坍塌和油层损害等共存技术难题等优点,适用于高渗透性和微裂缝性漏失地层。智能材料与钻井液堵漏技术的结合,可分为基础研究、成果转化和工业应用3个阶段,目前钻井液堵漏领域大多数智能材料仍处于基础研究阶段。在未来研究过程中,智能形状记忆材料应注重通过二阶段固化技术提高其承压强度;智能凝胶材料应提高自愈合、自胶结等凝胶材料在高温等苛刻条件下的适用能力;智能膜堵漏材料应实现成膜厚度和成膜强度双提升,提高智能膜对漏失通道的适用能力;智能仿生材料应注重将架桥封堵、自适应封堵和智能仿生封堵结合起来,实现协同强化堵漏。总体而言,目前智能材料在钻井液堵漏领域的研究和应用仍处于起步阶段,未来应继续提高智能堵漏材料性能,拓宽使用范围,制定科学化和智能化的堵漏工艺,加快成果转化和工业化应用,推动钻井液防漏堵漏技术的实用性、创新性和智能化发展。

猜你喜欢

形状记忆记忆合金钻井液
一种形状记忆聚氨酯开孔泡沫材料及其制备方法
纳米材料在水基钻井液中的应用
浅论SMA记忆合金
流动式海上水基钻井液EPS处理技术研究及应用
车用形状记忆复合材料现状及未来发展趋势
形状记忆合金及其研究进展综述
形状记忆材料概述
浙江大学研发出新型形状记忆塑料
记忆合金内固定治疗骨折临床效果及存在问题研究
高密度钻井液技术的现状与发展趋势