APP下载

具有抑制植物病原真菌活性的含氮、硫、磷壳聚糖衍生物的研究进展

2020-07-24邢荣娥秦玉坤李克成李鹏程

海洋科学 2020年7期
关键词:三唑含硫烷基

邢荣娥 , 秦玉坤 , 李克成 , 刘 松 , 李鹏程

(1. 中国科学院海洋研究所 实验海洋生物学重点实验室, 山东 青岛 266071; 2. 青岛海洋科学与技术试点国家实验室 海洋药物与生物制品功能实验室, 山东 青岛 266237; 3. 中国科学院海洋大科学研究中心, 山东青岛 266071)

甲壳素(chitin)又名甲壳质、几丁质, 其化学名称为 β-(1→4)-2-N-乙酰氨基-2-脱氧-D-葡萄糖, 分子式为(C6H13NO5)n, 结构如图1。甲壳素广泛存在于自然界中, 如甲壳动物外壳、真菌的细胞壁以及昆虫的外壳等, 每年生物合成量约为 100亿吨[1], 是继纤维素后的第二大可再生生物合成资源, 在水产加工副产物中的含量甚丰, 如在虾、蟹壳中的含量可达15%~30%。甲壳素不溶于水、乙醇等有机溶剂以及稀酸和稀碱, 可溶于浓无机酸, 但在溶解过程中主链发生降解, 乙酰基发生脱除, 分子结构发生了改变。壳聚糖, 又叫几丁聚糖, 是甲壳素的脱乙酰基的产物, 脱乙酰度通常在 50%~100%, 化学名为β-(1→4)-2-氨基-2-脱氧-D-葡萄糖, 由于甲壳素分子中二位乙酰基的脱除, 其分子式为(C5H11NO5)n, 结构如图1。壳聚糖随着乙酰基含量的减少或游离氨基含量的增加, 溶解性得到改善, 可溶于甲酸、乙酸、柠檬酸、酒石酸、稀盐酸等一些有机酸和稀的无机酸, 但不溶于稀硫酸。同时, 由于壳聚糖天然无毒、生物相容性好、可生物降解, 且是一种具有独特的物理化学结构的阳离子多糖, 而成为国内外的研究热点, 研究领域主要包括医药[2-4]、农业[5-6]、食品[7-11]、造纸[12-14]、废水处理[15-17]等, 且其在农业、食品、日用化工等行业已经研发成功多个产品并得到了广大用户的认可。

许多研究发现, 壳聚糖具有广谱的抗植物病原真菌活性。Benhamou等[18]发现1 mg/mL的壳聚糖可防治由镰刀菌所引起的番茄茎腐病, 抑制效果为70%。董秋洪等[19]研究表明, 壳聚糖对辣椒疫霉病菌的抑制效果最高可达 91.7%, 水稻恶苗病菌的抑制效果最高达68.4%。苏村水等[20]研究发现, 施用壳聚糖后的木荷和杨梅苗木立枯病的发病率均降低, 且杨梅的发病率较未施用壳聚糖的降低达 60.6%~71.5%。由于壳聚糖对部分植物病原真菌的抑制活性,中华人民共和国农业部于2009年将几丁聚糖批准为生物农药, 其作用是抗番茄晚疫病。虽然壳聚糖对真菌具有一定的抑制活性, 但仅对少部分菌种具有较好的抑制活性, 大部分抑制活性不高, 且壳聚糖不溶于水和大部分有机溶剂, 使其在农业上的应用受到了很大限制。壳聚糖分子中含有氨基和羟基三个活性基团, 通过对活性基团进行修饰, 可提高壳聚糖的水溶性和抑菌性、抗氧化性等功能活性, 因此改性是一种提高壳聚糖抑菌活性的有效方法。改性方法主要有交联[21-26]、接枝[27]、酰化[28]、磺化[29-35]、羧基化[36-37]、烷基化[38]、硝化[39]、磷酸化[40]、卤化[41]、螯合[42-45]等多种, 壳聚糖经改性后, 在溶解度、生物活性等方面均有了一定程度的改善。

图1 甲壳质(乙酰基含量>50%时)、壳聚糖(氨基含量>50%时)的结构式(n为聚合度)Fig. 1 Structure of chitin (acetyl content > 50 %) and chitosan(amino content >50%) (n = polymer degree)

大量研究表明壳聚糖骨架中引入抑菌活性基团可以显著提高其抑菌活性并拓宽抑菌谱。因此, 本文系统总结了20年来课题组制备的含氮、含硫、含磷等功能基团壳聚糖衍生物的抑真菌特性, 通过取代基团、取代位点、分子量、电负性等多种参数探讨了各衍生物对抑菌活性的影响, 为研制新型海洋生物农药提供了理论基础和技术支撑。

1 含不同活性基团的壳聚糖衍生物及其抗植物病原真菌活性

1.1 壳聚糖含氮衍生物及其抑菌活性

含氮杂环化合物, 如吡啶、嘧啶、三唑等化合物,生物活性高、选择性好、对温血动物及鸟类、鱼类的毒性低, 且可筛选出超高效农药而成为研究的热点[46]。先灵农业化学品公司、汽巴-嘉基公司、日本组合公司等开发的嘧啶胺类化合物对灰葡萄孢等病害具有较好的防效, 德国拜耳公司等开发的三唑类杀菌剂也具有很高的杀菌活性。为了验证含氮化合物与壳聚糖是否具有协同增效作用, 本课题组合成了系列壳聚糖含氮衍生物, Qin等[47-49]以壳聚糖为母体, 将高抑菌活性基团三唑基团等引入到壳聚糖分子中, 合成了3-甲基-1, 2, 4-三唑壳聚糖、3-氯甲基-1,2, 4-三唑壳聚糖等五种含氮衍生物, 并研究了他们对黄瓜枯萎病原真菌(F. oxysporum)、葱紫斑病原真菌(A. porri)、茶炭疽病原真菌(G. theae-sinensis)等多种植物病原真菌的抑制活性, 结果表明, 高抑菌活性三唑基团的引入, 使壳聚糖的抑菌活性和抑菌谱发生了明显的变化, 但并未达到现有三唑类杀菌剂的效果。原料壳聚糖对梨轮纹病原真菌、芦笋茎枯病原真菌、黄瓜枯萎病原真菌和茶炭疽病原真菌具有较好的抑制活性, 在1 000 μg/mL时, 其抑制率达到81.7%、100%、83.9%和82.5%。而经改性后, 壳聚糖1, 2, 4-三唑衍生物对梨轮纹病原真菌、番茄灰叶斑病原真菌、葱紫斑病原真菌、茶炭疽病原真菌,壳聚糖1, 2, 3-三唑衍生物对番茄灰叶斑病原真菌和葱紫斑病原真菌均具有较好的抑菌活性, 也就是修饰后的壳聚糖三唑类衍生物对壳聚糖本身抑制效果差的番茄灰叶斑病原真菌、葱紫斑病原真菌抑制活性均显著提高, 这说明三唑基团在改变壳聚糖的抑菌谱方面具有很大的作用, 通过引入三唑基团, 可以使壳聚糖的抑菌谱更宽, 应用面更广。另外, 三唑基团的位点对壳聚糖抑菌活性影响显著, 1, 2, 4-三唑衍生物最高抑制率可达100%, 优于壳聚糖1, 2, 3-三唑衍生物的抑菌活性。Qin等还发现, 三唑环上取代基电负性和空间位阻对抑菌活性影响较大, 含有强供电性、空间位阻较小的基团的抑菌活性较强。如三唑环上取代基为甲基的抑菌活性优于体积和吸电性都比甲基大的氯甲基, 而含有苯基的抑菌活性最差。对于壳聚糖1, 2, 3-三唑衍生物, 壳聚糖苯甲酸酯-1, 2, 3-三唑强于壳聚糖烟酸酯-1, 2, 3-三唑, 可能是由于电负性的影响, 吡啶基中氮原子的存在使长链状结构的壳聚糖1, 2, 3-三唑衍生物的电负性明显增强, 化学稳定性相应降低, 抑菌活性降低, 而相对于吡啶基, 苯基的电子分布更加均匀, 共轭效应更强,抑菌活性增加。

1.2 壳聚糖含硫衍生物及其抑菌活性

含硫化合物是一类重要的合成中间体, 在医药、农药等领域具有重要的作用。目前已应用于杀虫剂、除草剂、杀菌剂。如将具有非选择性的除草剂喹唑啉衍生物中的羰基修饰变成磺酰基后, 可成为专一性的对大豆和水稻的除草剂。因此, 此类杀菌剂的研究得到了广泛关注[50]。本课题组Zhong[51-54]、Qin[55-60]等依据生物等排等原理, 将磺酰胺、异硫氰酸酯、酰基缩氨基硫脲、缩氨基硫脲基团、二硫代氨基氨基甲酸酯(盐)等高抑菌活性的含硫基团导入壳聚糖分子中, 得到了系列新型壳聚糖含硫衍生物 40余种,如烷基缩氨基硫脲、壳聚糖二硫代氨基甲酸酯等。钟志梅等研究了壳聚糖磺酰胺类衍生物、酰基异硫氰酸酯类衍生物、酰基缩氨基硫脲类衍生物对棉花枯萎病菌(Fusarium oxysporumf.sp. Vasinfectum)、葡萄炭疽病菌[Colletotrichum gloeosporioides(Penz.)Saec]、黄瓜灰霉病菌[Pseudoperonospora cubeneis(Berk et cort)Rostuv]等植物病原真菌的抑制活性, 探讨了取代基的空间效应、衍生物分子量、浓度、取代基种类等对其抑制植物病原真菌活性的影响。发现取代基的空间效应、衍生物的分子量和电负性对于植物病原真菌的抑制效果影响显著。吸电子空间诱导效应和较大的分子量其抑菌效果较强, 如分子量 200 kDa的衍生物(500 μg/mL)对姜叶斑点病菌的相对抑制率达90%, 而57 kDa和7 kDa的衍生物对姜叶斑点病菌的相对抑制率分别为46.67%和40%。而大的空间位阻则导致抑菌活性降低。为了找到具有更高抑制病原真菌活性的含硫化合物, 秦玉坤等就钟志梅等的工作进行了进一步研究, 在含硫壳聚糖衍生物分子中引入卤素和苯环等基团, 获得了壳聚糖乙酰基缩邻氯苯氨基硫脲、壳聚糖乙酰基缩邻氟苯氨基硫脲、壳聚糖乙酰基缩邻三氟甲基苯氨基硫脲等壳聚糖含硫衍生物。探讨了卤素和苯环引入后, 衍生物抑菌活性的变化, 发现电负性依然是影响衍生物活性的重要因素, 氯的吸电性比氟和三氟甲基弱, 因此其抑菌活性强于氟取代基和三氟甲基取代基, 而三氟甲基吸电性最强, 其抑菌活性最弱。但总体来讲,引入卤素和苯环等基团后, 抑菌效果仍然不佳。为了增强抑菌活性, 对取代基团和结构进行了进一步改进, 合成了不同烷基链长度的壳聚糖烷基缩氨基硫脲衍生物, 如乙基、丙基、正丁基、异丁基, 结果表明壳聚糖取代苯基缩氨基硫脲衍生物的抑制植物病原真菌活性要明显高于壳聚糖烷基缩氨基硫脲衍生物, 也就是在分子中引入苯环比引入烷基更加有效。尽管烷基的引入其抑菌活性未得到有效的改善, 但我们发现碳链的长度对抑菌活性有较大影响, 碳链越长其抑菌活性越高。为了得到抑菌活性更佳的产品, 将常用农药福美双的活性基团二硫代氨基甲酸酯引入到壳聚糖骨架中, 制备得到壳聚糖二硫代氨基甲酸甲酯、壳聚糖二硫代氨基甲酸乙酯含硫衍生物。抑菌结果表明二硫代氨基甲酸酯基团可以提高壳聚糖的抑菌活性和拓宽抑菌谱, 在1 000 μg/mL浓度下, 壳聚糖对茶炭疽病原真菌和葱紫斑病原真菌抑制活性分别为82.5%和65.1%, 而壳聚糖二硫代氨基甲酸酯衍生物在该浓度下对两种菌的抑制率均显著提高, 达到100%。说明通过对壳聚糖含硫衍生物的进一步改进, 有望得到抑菌效果好的生物农药。

1.3 壳聚糖含磷衍生物及其抑菌活性

具有杀菌或抑菌活性的有机磷杀菌剂的基本化学结构是磷酸酯、硫代磷酸酯、磷酰胺类等[61]。如对稻瘟病有效的克瘟散、稻瘟净等防治白粉病的磷酰胺类产品TH184-F和硫代磷酸酯类产品Hoe2873等, 大多具有内吸杀菌活性, 残留低, 但长期使用却使病原菌产生抗药性, 且有机磷杀菌剂的类型间也会产生负交互扰性, 给农业安全生产带来极大威胁,对其进行改性, 减少副作用和抗性是解决问题的关键。壳聚糖天然无毒, 是一个很好的载体, 将膦酸酯基团接枝到壳聚糖上, 使衍生物既能发挥有机磷的高效杀菌活性, 又能保持壳聚糖本身所具有的天然无毒副作用、可降解、生物相容性好的特性。本课题组Zhong等[62-63]制备了20种不同分子量、不同取代基的壳聚糖含磷衍生物。研究了烷基链长度对壳聚糖含磷衍生物抑菌活性的影响, 发现烷基磷酸酯壳聚糖衍生物中, 丁基膦酸酯壳聚糖抑菌活性大于丙基膦酸酯壳聚糖, 丙基大于乙基, 说明烷基链越长, 其抑菌活性越强, 该结果与李在国等[64]的研究结果一致, 李在国等发现α-氨基烷基膦酸酯中α-位烷基的大小会影响 α-氨基的亲核性, 并对其生物活性有影响。为进一步确定取代基对抑制植物病原真菌活性的影响, Zhong等[62]将 α-位用含不同取代基的苯环基团替代烷基基团, 探讨衍生物的结构和抑菌活性的关系。发现可能由于强给电子基团-OH对于苯环诱导效应的影响, α-位取代基为水杨基的衍生物抑菌活性大于为苯基的衍生物, 且优于 α-氨基烷基膦酸酯衍生物。在实验室原有烷基、芳香基的基础上, Qin等[65-66]进一步研究了杂环基团对壳聚糖含磷衍生物的抑菌活性的影响, 制备了壳聚糖 α-氨基杂环基膦酸酯衍生物 5种, 即苯氧基嘧啶膦酸甲酯、苯氧基嘧啶膦酸乙酯、正丙基膦酸乙酯、呋喃基膦酸甲酯和呋喃基膦酸乙酯。Qin等发现5种含磷壳聚糖衍生物均具有很好的抑菌效果和广谱的抑菌性。相较于壳聚糖抑制效果较差的花生菌核病原真菌、番茄早疫病原真菌和番茄灰叶斑病原真菌, 5种含磷衍生物对三种真菌的抑制率超过80%,与三唑酮和多抗霉素抑制效果相当。对黄瓜枯萎、芦笋茎枯、葱紫斑、茶炭疽、梨轮纹病原真菌的抑制作用尤其有效, 在测试浓度下抑制效果均达到了100%, 优于多抗霉素和三唑酮, 具有潜在的开发为新型高效、环境相容好、无残留的生物农药的价值。

2 结论与展望

壳聚糖作为一种天然的聚阳离子多糖, 在不同领域显示出许多优秀的活性。许多研究表明壳聚糖具有广谱抗植物病原真菌活性。但由于壳聚糖为天然产物, 与化学农药相比, 其杀菌活性较弱, 达到较好杀菌或抑菌效果时所用剂量较大, 相应的成本增高, 推广起来较为困难, 从而限制了其应用。对其进行衍生化提高其抗菌活性成为有效途径。为了寻找在生物农药方面有发展前景的新型壳聚糖衍生物,本论文介绍了含氮、含硫、含磷的 200余个壳聚糖衍生物及其抑菌活性特性。发现衍生物抑菌活性不仅受真菌类型的影响, 而且在很大程度上还受其衍生化的基团、取代基电负性、空间位阻、衍生物的正离子形式、正电性强弱、分子量大小等的影响。一般而言, 空间位阻的增大, 抑菌活性降低, 结构单元中 P-π共轭与苯环的二面角越大, 抑菌效果越好;取代基的电负性不同, 抑菌活性受到较大影响, 含有强的供电性的基团抑菌效果越好; 分子量较大(如200 kDa), 抑菌效果较好; 引入杂环的抑菌效果优于苯环, 苯环优于烷基, 烷基链越长, 抑菌效果越好。而且发现各类衍生物的抑菌谱有较大差别。含氮、含硫衍生物只对部分病原真菌具有抑制作用, 而含磷衍生物对研究的供试菌种均具有好的抑制效果。因此, 可根据靶标设计不同分子量、不同取代基团的衍生物, 其开发潜力巨大。

虽然壳聚糖及其衍生物在抑制病原真菌方面的研究已经有了很多报道, 但仍有许多问题没有得到解决。主要表现在以下两个方面: (1)缺乏合理的生物分子设计, 随机性较强, 这就造成了很多情况下结构改性后壳聚糖的抑菌活性提高有限, 仍难以与现有杀菌剂相比。(2)目前用于活性研究的壳聚糖及其衍生物多为混合物, 其活性受分子量、脱乙酰度等多重因素影响, 不同的研究中往往活性存在很大的差异, 有些甚至得到截然相反的结果, 这使得很难准确评价壳聚糖及其衍生物的构效关系。如其抑菌的机制尚不明确; 衍生物的稳定性、毒理学评价、对生态环境的影响等均未报道。目前有关壳聚糖抑制植物病原真菌方面的产业化产品除壳聚糖本身(抑制番茄晚疫病, 登记号PD20102080)外, 均为与含氮、含硫、含磷等农药的复配产品, 如具有抑制水稻稻瘟病的氨基寡糖素(2%, 壳聚糖的降解产物)与稻瘟酰胺(40%)(登记号PD20170082), 抑制水稻纹枯病的氨基寡糖素(2%)与噻呋酰胺(40%)(登记号 PD20170113),抑制黄瓜霜霉病的几丁聚糖(1%)和嘧菌酯(登记号PD20161008)等, 直接衍生化的产物还未有产品问世。因此, 上述问题的解决是关键的, 这对研制新型无毒副作用、低或无耐药性的海洋生物农药具有十分重要的意义。

猜你喜欢

三唑含硫烷基
燃烧含硫废弃物的方法和含硫废弃物制硫酸的方法
重烷基苯磺酸的生产与工艺研究
埃克森美孚公开芳烃烷基转移方法
一种应用于高含硫气井的智能取垢器系统设计
含硫柳汞废水处理方法研究
20%三唑锡悬浮剂防治苹果红蜘蛛效果试验
含四(3,5-二硝基-1,2,4-三唑基)硼酸肼推进剂的能量特性计算
三唑类富氮化合物的研究进展
烷基萘的合成及性能、应用概述
1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-联-1,2,4-三唑的合成及性能