APP下载

一类具有输入量化和未知扰动的非线性系统的自适应有限时间动态面控制

2020-07-07齐晓静刘文慧

南京信息工程大学学报 2020年3期
关键词:适应控制观测器闭环

齐晓静 刘文慧

摘要

本文研究了具有量化输入信号和未知扰动的非线性系统的有限时间自适应输出反馈动态面控制问题.在控制设计过程中,利用模糊逻辑系统对系统中的非线性项进行逼近.然后引入一种滞回量化器来避免量化信号中的抖振,并且构造模糊观测器来估计系统中不可测的状态.为了提出一种有限时间控制策略,首先给出了半全局实际有限时间稳定的判据.在此基础上,将动态面控制技术与反步法相结合,设计了自适应模糊控制器.该控制器不仅能保证跟踪误差在有限时间内收敛到原点的一个小邻域,而且可以保证闭环系统中所有信号的有界性.最后通过一个仿真实例验证了该控制方法的有效性和可行性.关键词

量化输入信号;模糊逻辑系统;动态面控制;反步法;有限时间跟踪控制

中图分类号 TP273.4

文献标志码 A

0 引言

在过去的几十年里,自适应控制方法作为求解参数不确定的非线性系统控制问题的主要方法之一得到了广泛的应用[1-6].此外,为了克服复杂未知的非线性函数对非线性系统的影响,利用模糊逻辑系统(FLSs)[7]或神经网络(NNs)[8],提出了许多针对不确定非线性系统的模糊或神经网络控制方法[9-11].近年来,将自适应控制方法与模糊逻辑系统或神经网络相结合,取得了许多有意义的研究成果.比如,文献[12-14]针对不确定的严格反馈非线性系统,构造了基于FLSs或NNs的自适应控制方法.在文献[15-16]中,基于FLSs或NNs,提出了非线性纯反馈系统的自适应控制方法.文献[17-18]研究了非线性非严格反馈系统的自适应智能控制问题.在已有方法的基础上,本文采用模糊自适应控制方法,提出了一种有限时间自适应模糊控制器.

目前,量化控制已经成为控制工程中的一个重要课题.它已经广泛应用于数字控制系统、混合系统和网络控制系统中,如文献[19-21]研究了非线性系统的量化控制问题.這些系统的一个共同特点是需要通过组件之间的无线媒体传输信息.由于无线通信网络的物理局限性,所以引入了量化技术来降低通信速率.设计量化控制系统的控制方案,其基础问题是保证系统在低带宽下能够正常运行.因此量化对于许多实际控制系统是必要的,也是有益的.本文采用滞后量化器来消除文献[22]中提出的对数量化器所引起的抖振现象.

值得注意的是,在传统的反步技术中,由于某些非线性函数在每一步的重复微分会导致“复杂性爆炸”.因此,为了避免这一问题,提出了动态表面控制(DSC)技术.该方法将一阶滤波器引入到反步法的每一步中,将原微分运算转化为代数运算,使得在实际中难以控制的模型易于实现.近几十年来,动态表面控制技术在不确定非线性系统的自适应控制中得到了广泛的应用.例如,文献[23-25]针对严格反馈或纯反馈非线性系统,研究了基于FLSs或NNs的自适应动态表面控制策略.文献[26-28]研究了基于动态面技术的非严格反馈非线性系统的自适应控制方法.虽然上述文献所设计的控制器可以保证闭环系统的有界性,但不能保证系统在有限时间内的稳定性. 因此,本文将研究闭环系统的有限时间稳定性.

上述研究问题主要与无限时间跟踪控制有关.然而,在实际工程中,控制目标往往需要在有限的时间内收敛.有限时间控制可以使闭环系统具有更快的响应速度、更高的跟踪精度和更好的抗干扰能力.因此,近年来有限时间控制的分析与综合越来越受到人们的重视.例如,文献[29]针对一类具有输入饱和的非线性严格反馈系统,提出了一种模糊自适应有限时间控制设计方法;文献[30]研究了非线性纯反馈系统的自适应有限时间跟踪控制方法.随后,文献[31-32]设计了状态观测器,消除了文献[29-30]中要求状态完全可测量的限制,提出了有限时间自适应控制策略.然而,如何有效地解决具有输入量化和未知扰动的非线性系统的有限时间自适应控制问题仍是一个棘手的问题.

本文的主要贡献如下:

1) 针对一类具有量化输入和未知扰动的非线性系统,提出了一种新的自适应控制方案.与文献[5]和文献[16]相比,本文不仅考虑了系统的量化输入和未知扰动,而且提出了一种有限时间自适应模糊控制策略.

2) 本文提出了一种输出反馈控制方案,设计了模糊自适应观测器来估计系统中的不可测状态.并且,本文采用滞回量化器对输入信号进行量化,避免了量化信号中的抖振.

3) 本文采用动态面控制技术,克服了反步设计中“复杂性爆炸”的缺点,降低了控制算法的计算复杂度.

5 结束语

本文针对一类具有量化输入和未知扰动的非线性系统,提出了一种基于输出反馈的有限时间自适应模糊控制方案.采用模糊逻辑系统对系统中的非线性项进行逼近,利用一种滞回量化器来避免量化信号中的抖振.该控制方案可保证整个系统是SGPFS,保证闭环系统中的所有信号都是有界的,并且观测器误差及跟踪误差能够在有限时间内收敛到原点的一个小邻域,可以获得良好的跟踪性能.仿真结果验证了该控制方法的有效性和可行性.

参考文献

References

[1]

李刚,苗国英,张静怡.基于观测器的多智能体系统的自适应一致性控制[J].南京信息工程大学学报(自然科学版),2019,11(4):373-379

LI Gang,MIAO Guoying,ZHANG Jingyi.Observer-based adaptive consensus control for multi-agent systems[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2019,11(4):373-379

[2] 高志峰,韩冰,钱默抒,等.考虑传感器故障的柔性航天器自适应积分滑模主动容错控制[J].南京信息工程大学学报(自然科学版),2018,10(2):146-152

GAO Zhifeng,HAN Bing,QIAN Moshu,et al.Active fault tolerant control for flexible spacecraft with sensor faults based on adaptive integral sliding mode[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2018,10(2):146-152

[3] Li Y M,Tong S C.Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead zone[J].IEEE Transactions on Fuzzy Systems,2014,22(5):1341-1347

[4] Zhou Q,Wang L,Wu C,et al.Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,47(1):1-12

[5] Esfandiari K,Abdollahi F,Talebi H A.Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(10):2311-2322

[6] Chen C L P,Liu Y J,Wen G X.Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems[J].IEEE Transactions on Cybernetics,2014,44(5):583-593

[7] Liu Z,Wang F,Zhang Y,et al.Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems[J].IEEE Transactions on Cybernetics,2016,46(2):524-534

[8] Wen Y T,Ren X M.Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction[J].IEEE Transactions on Neural Networks,2011,22(10):1599-1612

[9] Wang F,Chen B,Lin C,et al.Adaptive neural network finite-time output feedback control of quantized nonlinear systems[J].IEEE Transactions on Cybernetics,2018,48(6):1839-1848

[10] 馬敏,王桐,邱剑彬.含有执行器故障的非线性切换互联大系统的自适应模糊Backstepping容错控制[J].南京信息工程大学学报(自然科学版),2018,10(6):665-675

MA Min,WANG Tong,QIU Jianbin.Adaptive fuzzy backstepping fault-tolerant control for nonlinear large-scale interconnected switched systems with actuator failures[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2018,10(6):665-675

[11] Liu W H,Lim C C,Shi P,et al.Backstepping fuzzy adaptive control for a class of quantized nonlinear systems[J].IEEE Transactions on Fuzzy Systems,2017,25(5):1090-1101

[12] Li D P,Liu Y J,Tong S C,et al.Neural networks-based adaptive control for nonlinear state constrained systems with input delay[J].IEEE Transactions on Cybernetics,2019,49(4):1249-1258

[13] Xu B,Shi Z K,Yang C G,et al.Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form[J].IEEE Transactions on Cybernetics,2014,44(12):2626-2634

[14] Tong S C,Li Y M.Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones[J].IEEE Transactions on Fuzzy Systems,2012,20(1):168-180

[15] Wang M,Liu X P,Shi P.Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2011,41(6):1681-1692

[16] Zhang T P,Wen H,Zhu Q.Adaptive fuzzy control of nonlinear systems in pure feedback form based on input-to-state stability[J].IEEE Transactions on Fuzzy Systems,2010,18(1):80-93

[17] Chen B,Lin C,Liu X P,et al.Adaptive fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict-feedback form[J].IEEE Transactions on Cybernetics,2015,45(12):2744-2755

[18] Yu Z X,Li S G,Li F F.Observer-based adaptive neural dynamic surface control for a class of non-strict-feedback stochastic nonlinear systems[J].International Journal of Systems Science,2016,47(1):194-208

[19] Liu T F,Jiang Z P,Hill D J.A sector bound approach to feedback control of nonlinear systems with state quantization[J].Automatica,2012,48(1):145-152

[20] Li F B,Shi P,Wu L G,et al.Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems[J].IEEE Transactions on Industrial Electronics,2015,62(4):2330-2340

[21] Liu W H,Lim C C,Shi P,et al.Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation[J].International Journal of Control,2017,90(11):2433-2448

[22] Elia N,Mitter S K.Stabilization of linear systems with limited information[J].IEEE Transactions on Automatic Control,2001,46(9):1384-1400

[23] Wang M,Liu X,Shi P.Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2011,41(6):1681-1692

[24] Xu B,Shi Z,Yang C,Sun F.Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form[J].IEEE Transactions on Cybernetics,2014,44(12):2626-2634

[25] Shen Q K,Jiang B,Cocquempot V.Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults[J].IEEE Transactions on Fuzzy Systems,2014,22(2):338-349

[26] Li Y M,Tong S C,Liu L,et al.Adaptive output-feedback control design with prescribed performance for switched nonlinear systems[J].Automatica,2017,80:225-231

[27] Yu Z,Li S,Li F.Observer-based adaptive neural dynamic surface control for a class of non-strict-feedback stochastic nonlinear systems[J].International Journal of Systems Science,2016,47(1):194-208

[28] Yoo S J.Adaptive tracking control for uncertain switched nonlinear systems in nonstrict-feedback form[J].Journal of the Franklin Institute,2016,353(6):1409-1422

[29] Yu J,Zhao L,Yu H,et al.Fuzzy finite-time command filtered control of nonlinear systems with input saturation[J].IEEE Transactions on Cybernetics,2018,48(8):2378-2387

[30] Wang F,Chen B,Liu X P,et al.Finite-time adaptive fuzzy tracking control design for nonlinear systems[J].IEEE Transactions on Fuzzy Systems,2018,26(3):1207-1216

[31] Liu L,Liu Y J,Tong S C.Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems[J].IEEE Transactions on Cybernetics,2019,49(7):2536-2545

[32] Li Y M,Li K W,Tong S C.Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems[J].IEEE Transactions on Fuzzy Systems,2019,27(1):96-110

Adaptive finite-time dynamic surface control for nonlinear systems with

input quantization and unknown disturbances

QI Xiaojing1 LIU Wenhui1

1 School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023

Abstract In this paper,the problem of finite-time adaptive output feedback dynamic surface control is studied for a class of nonlinear systems with quantized input signals and unknown disturbances.In the control design process,the nonlinear terms in the system are approximated by the fuzzy logic systems.A hysteretic quantizer is introduced to avoid chattering in the quantized signals,and the fuzzy state observer is constructed to estimate the unmeasurable states of the system.In order to propose the finite-time control strategy,firstly,a semi-global practical finite-time stability criterion is given.On this basis,an adaptive fuzzy controller is designed by combining the dynamic surface control technology with backstepping method.The controller can not only ensure that the observer and tracking error converge to a small neighborhood of the origin in a finite time,but also keep all the signals in the closed-loop system bounded.Finally,a simulation example is given to verify the effectiveness and feasibility of the control method.

Key words quantized input signals;fuzzy logic systems;dynamic surface control;backstepping;finite-time tracking control

收稿日期 2019-12-24

資助项目

国家自然科学基金青年基金(61803208);江苏省自然科学基金青年基金(BK20180726);江苏省高校自然科学研究面上项目(18KJB120005)

作者简介

刘文慧(通信作者),女,博士,讲师,研究方向为非线性控制、智能控制.liuwenhui1211@163.com

猜你喜欢

适应控制观测器闭环
采用自适应控制的STATCOM-SEIG系统Matlab仿真
单周期控制下双输入Buck变换器闭环系统设计
双闭环模糊控制在石化废水处理中的研究
考虑执行器饱和的改进无模型自适应控制
基于 L1自适应控制的无人机横侧向控制
基于观测器的列车网络控制
基于非线性未知输入观测器的航天器故障诊断
Rucklidge混沌系统的自适应控制
基于干扰观测器的PI控制单相逆变器
最优价格与回收努力激励的闭环供应链协调