广义光滑模和广义凸性模的性质
2020-05-21赵亮於杨
赵亮 於杨
摘 要:基于广义光滑模的定义,研究了Banach空间下的广义光滑模与t之间的关系,证明了一致非方的三个等价条件以及关于广义光滑模的四个等价命题。此外证明了Banach空间和超自反的Banach空间分别满足limt→0ραX(t)t<12和ραX(t)<α+32tω(x)-1,t·ω(X)≤1的条件下具有一致正规结构,ραX(t)和ω(X)分别为广义光滑模和弱正交系数。最后给出了x,y∈X当‖x‖2+‖y‖2=2时关于广义凸性模的一个不等式。
关键词:广义光滑模;广义凸性模;一致非方;一致正规结构
DOI:10.15938/j.jhust.2020.01.022
中图分类号: O177.7
文献标志码: A
文章编号: 1007-2683(2020)01-0144-05
Abstract:Based on the definitions of generalized modulus of smoothness, the relation between generalized modulus of smoothness and t in the Banach spaces is studied, which proves three equivalent conditions of uniform normal structure and four equivalent propositions of generalized modulus of smoothness. In addition, which is proved that the Banach space and the super reflexive Banach space satisfy conditions of limt→0ραX(t)t<12andραX(t)<α+32tω(x)-1,t·ω(X)≤1 have uniform normal structure.ραX(t)andω(X)are generalized modulus of smoothness and weak orthogonal coefficient respectively. Finally, which gives an inequality about the generalized convex modulus when ‖x‖2+‖y‖2=2,x,y∈X.
Keywords:
generalized modulus of smoothness;generalized modulus of convexity;uniformly nonsquare;uniform normal structure
0 引 言
作為近代泛函分析的重要分支,Banach空间几何理论的研究一直备受数学研究者们的亲睐。由于Banach空间几何理论在不动点理论、控制论、鞅论、逼近论等诸多领域有广泛的应用,因此Banach空间几何理论的研究具有重要意义。1936年,J.Clarkson刻画了一致凸性的凸性模,它们在最佳逼近理论以及不动点理论中有着重要的应用,1965年,W.A.Kirk证明了具有正规结构自反的Banach空间具有不动点性质。光滑性是作为凸性的对偶性质提出来的,广义光滑模的几何意义在于描述一个Banach空间的光滑性,与光滑模比较起来,在对具体的Banach空间的光滑性进行分析时,广义光滑模中可选择适当的α进行计算分析。
在对文[1-20]中关于凸性模、光滑模等的研究方法进行分析后,本文基于广义光滑模和广义凸性模的定义和性质,对其做了进一步研究,得到了广义光滑模在Banach空间与t之间的关系,非平凡的Banach空间几个等价条件,探究了Banach空间具有一致正规结构用广义光滑模刻画的充分条件以及超自反的Banach空间满足ραX(t)<α+32tω(x)-1,t·ω(X)≤1的条件下具有一致正规结构。最后得到了关于广义凸性模的一个不等式。
参 考 文 献:
[1] 赵亮, 张兴. Banach空间中的广义光滑模[J].哈尔滨理工大学学报,2016,21(4):112.ZHAO Liang, ZHANG Xing. Generalized Modulus of Smoothness in Banach Spaces[J]. Journal of Harbin University of Science and Technology,2016,21(4):112.
[2] 崔云安, 左占飞. 广义凸性模在不动点中的应用[J].黑龙江大学自然科学学报,2009,4(2):206.CUI Yunan, ZUO Zhanfei. The Application of Generalized Convex Modules in Fixed points [J]. Journal of Natural Science of Heilongjiang University,2009,4(2):206.
[3] 崔云安. Banach空间几何理论及应用[M].北京,科学出版社,2001:33.CUI Yunan. Geometric Theory and Application of Banach Space [M].Bej Jing, Science Press,2001:33.
[4] 赵亮, 王薇薇, 张兴. Banach空间具有正规结构的判定[J].哈尔滨理工大学学报,2018,23(4):142.
ZHAO Liang, WANG Weiwei, ZHANG Xing. The Determination of Banach Space with Normal Structure [J]. Journal of Harbin University of Science and Technology,2018,23(4):142.
[5] GAO J. On Some Geometric Parameters in Banach SpacesAn[J].Journal of Mathematical Analysis and Applications,2007,334:114.
[6] 王丰辉. Banach空间的模与常数及其在不动点理论中的应用[D].新乡:河南师范大学,2006.
[7] 赵亮, 崔云安. Musielak-Orlicz序列空间的非方常数[J].哈尔滨商业大学学报,2006,2(3): 112.ZHAO Liang, CUI Yunan. The Non Square Constant of Musielak-Orlicz Sequence Space[J]. Journal of Harbin University of Commerce, 2006, 2(3): 112.
[8] BARONTI M, PAPINI P L. Convexity, Smoothness and Moduli[J].Nonlinear Analysis,2009(70):2457.
[9] DANES J. On Local and Global Moduli of Convexity[J].Commen. Math. Univ. Carolinae,1976(67):413.
[10]BYNUM W L. Normal Structure Coefficients for Banach Spaces[J].Pacific J. Math,1980(86):427.
[11]YANG C, WANG F. On a Generalized Modulus of Convexity[J].Acta. Math. Sci,2007,27B(4): 838.
[12]SAEJUNG S. Sufficient Conditions for Uniform Normal Structure of Banach Spaces and Their Dualspaces[J].J. Math. Anal. Appl,2007(330):597.
[13]SAEJUNG S. Characteristic of Convexity of a Banach Space and Normal Structure[J].J. Math. Anal. Appl,2008(337):123.
[14]BANASS J. On Moduli of Smoothness of Banach Spaces[J].Bull. Pol. Acad. Sci. Math, 1986(34):287.
[15]楊长森, 赵俊峰. 凸性模估计定理的推广[J].数学学报,1998,4(1):81.YANG ChangSsen, ZHAO Junfeng. A Generalization of the Convex Module Estimation Theorem [J]. Acta Mathematica Sinica, 1998, 4(1): 81.
[16]杨长森, 左红亮. Hahn-Banach定理在凸性模定义中的应用[J].数学物理学报,2001,21(1):133.YANG Changshen, ZUO Hongliang. The Application of Hahn-Banach Theorem in the Definition of Convex Modules [J]. Acta of Mathematical Physics, 2001, 21(1): 133.
[17]郑亚男. 广义高继常数与广义光滑模的一些性质[J].河南师范大学学报,2011,4(2):12.ZHENG Yanan. Some Properties of Generalized High Heritability and Generalized Smooth Modules [J]. Journal of Henan Normal University, 2011, 4(2): 12.
[18]杜世维. Banach空间的几何常数在不动点中的应用[D].哈尔滨:哈尔滨理工大学,2011:26.
[19]GAO J. Normal Structure and Smoothness in Banach Spaces[J].Nonlinear Funct. Anal. Appl,2005,10(1):103.
[20]崔云安, 张帆, 张晓月. Banach空间的凸性模与正规结构[J].哈尔滨理工大学学报,2009,2(1):26.CUI Yunan, ZHANG Fan, ZHANG Xiaoyue. Convex Modules and Normal Structures of Banach Spaces [J]. Journal of Harbin University of Science and Technology, 2009, 2(1): 26.
(编辑:温泽宇)