不变子空间方法在时空分数阶偏微分方程中的应用
2020-04-29侯婕王丽真
侯婕 王丽真
摘要:文中介绍了不变子空间方法及其具体步骤,应用此方法研究了6类具有Caputo型导数的时空分数阶偏微分方程或方程组,并构造了这些方程(组)的解析解或给出了精确解所满足的决定方程组。
关 键 词:Caputo导数;不变子空间方法;时空分数阶偏微分方程
中图分类号:0175.2
DOI:10.16152/j.cnki.xdxbzr.2020-01-011开放科学(资源服务)标识码(OSID):
Applications of invariant subspace method in the space-timefractional partial differential equations
HOU Jie1,2, WANG Lizhen1,2
(1.School of Mathematics, Northwest University, Xi′an 710127, China;
2.Nonlinear Studies of Science, Northwest University, Xi′an 710127, China)
Abstract: This paper introduces the invariant subspace method and its main steps.Applying this method, we investigate six time-space fractional partial differential equations with the Caputo derivative and construct the analytic solutions of these equations or present the determining equations.
Key words: Caputo derivative; invariant subspace method; space-time fractional partial differential equation
近几十年里,分数阶偏微分方程在研究领域和工程应用中频繁出现,如生物学、物理学、信号处理、电化学等[1-2]。对分数阶偏微分方程的求解是偏微分方程研究中的一类重要问题,目前已经出现很多构建偏微分方程精确解的方法。例如Lie对称分析法[3-4]、Adomian分解方法[5]、齐次平衡法[6]及不变子空间法[7]。
本文所使用的不變子空间方法是求偏微分方程精确解的有效方法之一。该方法最先由Galaktionov和Svirshchevskii提出[7],后来被广泛应用到偏微分方程上,并被进一步推广到时间分数阶偏微分方程的研究中[8]。最近,这种方法又被用来研究时空分数阶偏微分方程。本文主要运用不变子空间方法对时空分数阶偏微分方程(组)进行求解。该方法将时空分数阶偏微分方程转化为时间分数阶常微分方程组,再利用导数公式对时间分数阶常微分方程组进行求解,从而得到时空分数阶方程解的精确表达式。
1 预备知识
定义1[9] 令0 4 结 语 本文主要通过不变子空间方法建立了5类时空分数阶偏微分方程的解析解。利用不变子空间法,将时空分数阶偏微分方程转化为时间分数阶常微分方程。再利用已知方程的解并结合Caputo导数公式对分数阶常微分方程进行求解,从而得到时空分数阶偏微分方程的精确解。以上的研究表明,不变子空间法对于时空分数阶方程偏微分而言,也是一种行之有效的求解方法。另外,由例6可知,求解的关键是建立分数阶常微分方程组的解。 参考文献: [1] OIDHAM K B, SPANIER J. The Fractional Calculus [M]. London: Academic Press,1974. [2] PODLUBNY I. Fractional Differential Equations [M].New York:Academic Press, 1999. [3] WANG L Z, HUANG Q. Symmetries and groupinvariant solutions for transonic pressure-gradient equations [J].Communications in Theoretical Physics,2011,56(2): 199-206. [4] WANG L Z, WANG D J, SHEN S F, et al.Lie point symmetry analysis of the harry-dym type equation with Riemann-Liouville fractional derivative [J].Mathematicae Applicate Sinica, English Series,2018,34(3): 469-477. [5] MOMANI S, ODIBAT Z. Analytical solution of a time fractional Navier-Stokes equation by Adomian decomoposition method [J].Applied Mathematics and Computation,2006,177:488-494. [6] RUI W G.Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs [J]. Commun Nonlinear Sci Numer Simulat,2017,47:253-266. [7] GALAKTIONOV V, SVIRSHCHEVSKII S. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics [M].London:Chapman & Hall/CRC,2007. [8] GAZIZOV R K, KASATKIN A A. Construction of exact solutions for fractional order differential equations by the invariant subspace method [J].Computers & Mathematics with Applications,2013,66(5):576-584. [9] HARRiS P A, GARRA R. Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method [J].Monlinear Studies, 2013,20(4):471-481. [10]CHOUDHARY S, GEJJI V D. Invariant subspace method: A tool for solving fractional partial differential equations [J].Fractional Colculus and Applied Analysis, 2017,20(2):477-493. [11]BALEANU D,INC M, YUSUF A,et al. Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws [J].Advances in Difference Equation,2018:46. [12]RUI W G.Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs [J].Communications in Nonlinear Science and Numerical Simulation,2017,47:253-266. [13]SIVASHINSKY G I. Nonlinear analysis of hydrodynamic instability in laminar flames [J]. Acta Astronautica,1977,4(11):1177-1206. [14]SAHADEVAN R, BAKKYARAJ T.Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations [J].Fractional Callulus and Applied Analysis,2015,18(1):146-162. [15]SONG J Q, SHEN S F, JIN Y Y, et al.New maximal dimension of invariant subspaces to coupled systems with two-component equations [J].Communications in Nonlinear Science and Numerical Simulation,2013,18(11):2984-2992. (編 辑 李 波)