APP下载

葡萄酒中与风味相关4类含硫化合物的研究进展

2020-03-30张清安陈博宇

中国农业科学 2020年5期
关键词:硫醇含硫谷胱甘肽

张清安,陈博宇

(陕西师范大学食品工程与营养科学学院,西安 710119)

葡萄酒是一种成分复杂的发酵饮料,葡萄酒所含的化合物很大程度上决定了其外观、香气、味道和口感[1]。其中含硫化合物是葡萄酒中对营养价值、风味有重要影响的化合物,如还原型谷胱甘肽(GSH)具有抗氧化、增强免疫力和解毒的作用,在生物还原、保护红细胞、抗氧化应激、抗异生素和内源性毒性代谢物解毒、酶活性及硫和氮代谢中发挥关键作用,对代谢和炎症疾病如多发性硬化、代谢综合征和糖尿病也有重要的功效[2-4];挥发性含硫化合物如4-巯基-4-甲基戊-2-酮(4MMP)、3-巯基-1-己醇(3MH)和3-巯基己基乙酸酯(3MHA)是葡萄酒百香果香气和葡萄柚香气的重要来源[5-8],而二氧化硫(SO2)、硫化氢(H2S)和低级硫醇如甲硫醇(MeSH)、乙硫醇(EtSH)则使葡萄酒产生不愉快的气味。葡萄酒中谷胱甘肽、硫醇、硫化氢和二氧化硫的含量、来源及贮藏期间的变化情况各不相同且极其复杂,目前仍没有统一的结论。因此,本文就近年来国内外针对葡萄酒中这4类含硫化合物存在形态、来源、检测技术、贮藏期间的变化及控制方法5个方面的研究进展进行梳理,以期为优化葡萄酒生产工艺、提升葡萄酒品质提供参考。

1 葡萄酒中4类含硫化合物的概况

在4类含硫化合物中,谷胱甘肽是非挥发性含硫化合物,其结构中含有游离巯基,具有氧化还原和亲核性质;挥发性含硫化合物根据结构可分为硫醇、硫化氢和二氧化硫,三者具有各自的特征气味且感官阈值极低,其含量对葡萄酒的风味影响显著。

1.1 谷胱甘肽

谷胱甘肽(glutathione)是一种由L-谷氨酸(LGlu)、L-半胱氨酸(L-Cys)和甘氨酸(Gly)经肽键缩合而成的三肽物质,广泛存在于动植物体内[9]。谷胱甘肽主要以还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)形式存在(图1),也有少部分会与辅酶A或半胱氨酸等形成混合二硫化物,一般情况下超过90%的谷胱甘肽以还原型存在[10]。1989年,CHEYNIER等[11]首次检测出葡萄果实中GSH的含量,由于品种、产区、收获期等因素,GSH的含量有所差异,在17—114 mg·kg-1,而未发酵葡萄汁中GSH的含量在1—20 mg·L-1。根据FRACASSETTI等[12]和KRITZINGER等[13]对白葡萄酒的测定结果,其中GSH的含量不高于70 mg·L-1。JANES等[14]检测了新酿长相思白葡萄酒中的GSH含量,其结果在1.3—34.7 mg·L-1,平均值为12.5 mg·L-1。

1.2 硫醇

图1 还原型谷胱甘肽和氧化型谷胱甘肽的结构Fig.1 Structure of the GSH and GSSG

硫醇是一类含有巯基官能团的化合物,挥发性硫醇感官阈值极低,对葡萄酒风味有重要影响[8]。葡萄酒中的硫醇主要是低级硫醇,如甲硫醇(MeSH)、乙硫醇(EtSH)和多官能团硫醇如4-巯基-4-甲基戊-2-酮(4MMP)、3-巯基-1-己醇(3MH)和3-巯基己基乙酸酯(3MHA)等。根据SIEBERT等[15]对澳大利亚产区的红、白葡萄酒中低级硫醇含量测定的结果,MeSH和EtSH的含量分别低于8 μg·L-1和1 μg·L-1。TOMINAGA等[7]于1998年首次检测出长相思葡萄酒中3种多官能团硫醇的含量,其结果分别为19.4—26.8 ng·L-1(4MMP),943—1 038 ng·L-1(3MH),30.9—36.8 ng·L-1(3MHA)。在此研究基础上,FERREIRA等[16]、SCHNEIDER等[17]和RODRÍGUEZ-BENCOMO等[18]改进了对4MMP、3MH和3MHA的检测方法,并提高了检测精度,最终测得4MMP、3MH和3MHA的含量分别为≤19 ng·L-1、500—3 200 ng·L-1、9—18 ng·L-1。但是葡萄酒中的一些硫醇如MeSH除了以游离态存在外,还会与金属离子如Cu2+、Zn2+可逆结合形成无气味化合物。根据FRANCO-LUESMA等[19]报道,红葡萄酒中平均60%以上的MeSH以结合态形式存在,白葡萄酒中结合态形式平均占30%以上。

1.3 硫化氢

硫化氢(H2S)是挥发性极强的含硫化合物,在5—10 μg·L-1低浓度时就能在葡萄酒中呈现出臭鸡蛋或腐败物的“还原性”臭味,如果不及时去除,H2S可进一步与醇类物质结合形成硫醇,其中低级硫醇会产生不愉快风味且不易去除,所以酿酒时要及时发现、控制并尽可能降低H2S含量,以保证葡萄酒优良的感官质量[20]。葡萄酒中H2S的含量与含硫化合物、酵母菌株种类、发酵条件和葡萄汁的营养成分有关[21]。LÓPEZ等[22]测定了西班牙产区21种白葡萄酒和13种红葡萄酒中H2S的总含量,其中红葡萄酒中H2S的总含量在13 μg·L-1以下,平均含量为2.8 μg·L-1;白葡萄酒中H2S的总含量不高于30 μg·L-1,平均含量为7.6 μg·L-1。H2S在葡萄酒中易与金属离子结合形成无气味化合物,根据FRANCO-LUESMA等[19]的研究结果,西班牙产区葡萄酒中大部分H2S以结合态形式存在,平均只有7%的H2S以游离态存在;其中红葡萄酒中游离态H2S的含量低于3.44 μg·L-1,占总含量的6%左右;白葡萄酒中游离态的H2S含量低于3.94 μg·L-1,约占总含量的7%。

1.4 二氧化硫

二氧化硫(SO2)是一种常见的食品添加剂,带有燃烧火柴的味道,感官阈值在20—25 μg·L-1,主要有抑菌、抗氧化、改善果酒风味和增酸等作用[23]。在葡萄酒酿造过程中,添加SO2的目的在于抑制细菌繁殖、防止氧化和变质。在葡萄汁刚榨出时,需添加SO2防止腐败;在发酵时,为了防止酿酒酵母把糖分发酵完,也需要添加SO2适时终止酿酒酵母的代谢发酵,保留一定的含糖量[24]。SO2在葡萄酒中常以SO2气体或亚硫酸氢根的游离态存在,或与含羰基化合物成键以结合态形式存在[25]。OLIVEIRA等[25]对葡萄酒中游离态和结合态SO2含量进行测定,其结果分别为2.1—30.9 mg·L-1和64.8—166.5 mg·L-1。适当添加SO2可以保护葡萄酒中的芳香物质,并促进陈酿香气的形成,减弱霉味等不良风味;但如果用量过大,或发酵结束温度仍较高时使用SO2,会形成一些不良风味,如硫味、臭鸡蛋味和蒜味等[26]。我国食品添加剂使用标准(GB 2760—2014)规定,葡萄酒中SO2的使用量不得高于250 mg·L-1,甜型葡萄酒系列产品中SO2使用量不得高于400 mg·L-1。国际葡萄与葡萄酒组织(OIV)规定,还原物质少于4 g·L-1的红葡萄酒中SO2总含量不得高于150 mg·L-1,还原物质少于4 g·L-1的白葡萄酒和桃红葡萄酒中SO2总含量不得高于200 mg·L-1,还原物质高于4 g·L-1的红葡萄酒、白葡萄酒和桃红葡萄酒中SO2总含量不得高于300 mg·L-1,在一些甜白葡萄酒中SO2总含量不得高于400 mg·L-1。

由上可知,葡萄酒中4类含硫化合物的含量及存在形态对葡萄酒的风味有重要影响,其中3类挥发性含硫化合物的感官阈值极低,且其含量高于感官阈值,对葡萄酒风味影响显著,4类含硫化合物的具体特性及比较见表1。

表1 葡萄酒中4类含硫化合物特性比较Table 1 Comparison of characteristics of four sulfur compounds in wine

2 葡萄酒中4类含硫化合物的来源

这4类含硫化合物的来源可分为内源性途径和外源性途径,内源性途径主要是发酵期间微生物对原料的代谢降解过程,外源性途径包括原料自身含有的含硫化合物及葡萄酒生产过程中添加的含硫化合物等。其中,微生物的代谢过程是近年的研究热点。

2.1 谷胱甘肽的来源

一般来说,未发酵葡萄汁中的GSH是葡萄酒中GSH的主要来源[29]。在葡萄叶的细胞溶质和叶绿体中,L-谷氨酸和L-半胱氨酸在γ-谷氨酰半胱氨酸合成酶的作用下形成γ-谷氨酰半胱氨酸,后者进一步与甘氨酸在GSH合成酶作用下形成GSH,随后GSH从叶子中导出,通过韧皮部分配到果实、种子和根中[30-31]。此外,酿酒酵母中也含有少量的GSH,占酿酒酵母干重的1%左右(10 g·kg-1)[32]。除外源性途径外,发酵期间酵母利用葡萄糖等作为碳源,以谷氨酸、半胱氨酸、甘氨酸为前体物质代谢产生GSH[33]。此外,葡萄的采收方法、果汁压榨条件、发酵条件如温度、pH等也会影响葡萄酒中GSH的含量,其中氧气和其他活泼氧化物(如醌类物质)影响最显著[34]。

2.2 硫醇的来源

葡萄酒中的硫醇化合物大多来源于含硫氨基酸的发酵、GSH降解以及以H2S为底物的化学反应和对应前体物质的发酵等[35-36],如MeSH是蛋氨酸、半胱氨酸发酵的产物,EtSH是H2S与乙醛反应的产物等。WEIMER等[37]认为酵母可通过两种代谢途径产生MeSH,一种是蛋氨酸直接分解产生MeSH、氨气和α-酮丁酸;另一种是蛋氨酸先形成中间产物α-酮-γ-甲硫基丁酸,再生成MeSH等代谢产物。

4MMP、3MH常来源于葡萄和葡萄汁中无气味前体物质的发酵;而3MHA的生物转化途径较为特殊,它来源于3MH的进一步酯化[38]。根据DES GACHONS等[39]和TOMINAGA等[40]报道,其中4MMP和3MH分别来源于半胱氨酸化前体物质如S-3-(4-巯基-4-甲基戊-2-酮)-半胱氨酸(Cys4MMP)、S-3-(己烷-1-醇)-半胱氨酸(Cys3MH)和S-3-(4-巯基-4-甲基戊-2-酮)-谷胱甘肽(G4MMP)、谷胱甘肽化前体如S-3-(己烷-1-醇)-谷胱甘肽(G3MH)的发酵,其中Cys3MH作为前体物质形成3MH的产率明显高于G3MH,而当G3MH作为前体物质形成3MH时,3MHA产率更高[41]。此外,HARSCH等[42]发现(E)-2-己烯-1-醇是一种新的3MH前体物质。根据HOWELL等[43]报道,4MMP的产生可受到负责编码裂解Cys4MMP碳硫裂合酶的BNA3、CYS3、GLO1和IRC7影响。关于影响3MH产生的基因仍无定论,但涉及的基因不止IRC7[44]。3MHA由3MH与乙酸酯化形成,根据SWIEGERS等[38]报道,这种反应受成酯醇乙酰转移酶(ester forming alcohol acetyltransferase)的控制,后者由ATF1编码,其中VIN13酵母菌株中ATF1的过表达会引起3MHA含量显着增加,而编码酯降解酶的IAH1过表达会引起3MHA含量降低。根据MURAT等[45]报道,葡萄酒中挥发性硫醇含量与半胱氨酸结合物等前体物质的含量呈正相关性,而后者的含量与葡萄品种及其种植海拔、土壤等情况有关[46]。

2.3 硫化氢的来源

H2S是酿酒酵母代谢过程中硫酸盐还原序列(SRS)途径的产物,也是含硫氨基酸生物合成的中间产物,主要由含硫氨基酸、硫酸盐和亚硫酸盐等经酵母代谢分解产生,但是具体的前体物质可能与发酵条件有关[47]。根据报道,葡萄汁合成培养基发酵产生的H2S主要来源于亚硫酸盐[48-51]。而根据KUNKEE等[52]报道,合成果汁培养基发酵产生的H2S主要来源于硫酸盐。也有学者认为,葡萄酒中GSH是潜在的H2S前体物质。HALLINAN等[53]报道,在用硫酸盐培养的氮饥饿酵母发酵产生的H2S中,40%来源于GSH。在缺乏氮源或硫源的条件下,GSH被迅速水解成氨基酸,其中半胱氨酸在半胱氨酸脱硫酶作用下进一步形成H2S,这一步主要受TUM1的影响[54]。

H2S发酵过程分两个阶段,发酵早期到中期产生的H2S与酵母的生长情况和营养物质如磷酸二铵(DAP)和泛酸的添加有关,发酵后期的影响因素较复杂,目前仍无定论[55]。H2S的产量主要与酵母菌株种类和基因有关,不同种类酿酒酵母菌株的H2S产率不同[56]。根据SPIROPOULOS等[57]报道,负责编码O-乙酰丝氨酸/ O-乙酰高丝氨酸硫氢化酶的MET17过表达会抑制H2S产生。DONALIES等[58]报道,负责编码腺苷磷酸激酶的MET14和负责编码亚硫酸盐泵的SSU1过表达会促进H2S产生。

2.4 二氧化硫的来源

葡萄酒中的SO2大多来自生产时的外源添加剂,其应用形式主要有偏重亚硫酸钾、亚硫酸、液体SO2和硫磺片等[24]。SO2应用的关键在于各个工艺环节中的用量,其涉及因素有很多,如葡萄酒的成熟度、葡萄酒的类型、酿造工艺、设备状况以及葡萄酒的内在质量(氧化程度、微生物感染程度、破败程度、pH)等[26]。也有少部分SO2来源于微生物发酵过程,在硫酸盐的代谢途径中,SO42-被还原成SO32-,部分SO32-会分解产生SO2,是酵母代谢的中间产物[21]。

由上可知,除原料和添加剂外,这4类含硫化合物的来源主要与发酵期间酿酒酵母的代谢活动有关。因此,优化原料品质、改进生产工艺、了解其具体代谢途径[1](图2)有助于减少异味产生、提升葡萄酒品质。

图2 4类含硫化合物的主要代谢途径及相关酶和基因Fig.2 Main metabolic pathway of four sulfur compounds and relevant enzymes and genes

3 葡萄酒中4类含硫化合物的检测方法

由上述内容可知,葡萄酒的风味与4类含硫化合物的含量及存在形态有关,这两者可能受原料品质和生产工艺影响。此外,4类含硫化合物检测方法的精确度和检测限不同也可能引起含量及存在形态的结果差异。

3.1 谷胱甘肽的检测方法

在谷胱甘肽含量测定方面,ELLMAN[59]最早提出基于5,5'-二硫代双(2-硝基苯甲酸)(DTNB)与巯基反应,利用分光光度法测定黄色反应产物4-硝基苯硫酚化合物(TNB)吸光值(412 nm),通过换算得到GSH的含量。基于此原理,1989年,CHEYNIER等[11]用DTNB标记葡萄汁中的GSH,结合高效液相色谱(HPLC)首次检测出葡萄汁中GSH的含量。根据JANES等[14]报道,利用邻苯二甲醛(OPA)作为柱前衍生化试剂,以冰的脱氧甲醇为氧化酶抑制剂,配合高效液相色谱-荧光检测(HPLC-FD)测定葡萄汁和葡萄酒中GSH的含量,排除氧化酶的影响,使GSH保持稳定,提高了检测灵敏度,检测限达0.06 mg·L-1。根据MARCHAND等[60]报道,以2,3-萘二醛(NDA)作为柱前衍生化试剂,配合HPLC-FD测定葡萄酒中GSH的含量,检测限可达0.03 mg·L-1。这些测定方法主要原理是基于HPLC分离能力优良、灵敏性高、专一性强、线性范围较宽、稳定性较高等特点,能够同时测定GSH和GSSG。NDA是一种GSH原位标记探针,NDA-氨基硫醇加合物能够被纳入环糊精腔,提高荧光比率(fluorescence ratio)。LAVIGNE等[29]报道,选择一溴联苯(MBB)作为柱前衍生化试剂,配合毛细管电泳-激光诱导荧光法(CE-LIF)检测葡萄酒中GSH含量时,检测限可达到0.02 mg·L-1。KRITZINGER等[61]以对苯醌(pBQ)作为柱前衍生化试剂,配合超高效液相色谱-电喷雾电离串联质谱法(UPLC-ESIMS/MS)检测葡萄酒中GSH含量时,检测限可达到0.0002 mg·L-1。

3.2 3类挥发性含硫化合物的检测方法

葡萄酒中挥发性含硫化合物如硫醇和H2S的含量通常很低,需要特殊的样品处理方法将其分离提取出来。ARTHUR[62]在1990年首次提出固相微萃取法(SPME),并将此技术应用到挥发性风味化合物的分析研究上。SPME是依据有机化合物能吸附在涂于石英细丝表面的色谱固定相上,且被吸附的分析物在气相色谱仪(GC)的进样口预热可定量解析的原理设计的。它摒弃了传统的溶剂,并将萃取、浓缩、解吸、进样集于一体,具有灵敏度较高、操作简单且成本较低等优点,目前已广泛应用于各种食品风味分析中[63-64]。在此技术基础上,LÓPEZ等[22]对葡萄酒中主要挥发性含硫化合物进行了研究,利用顶空固相微萃取(HP-SPME)配合羧基聚二甲基硅氧烷(CAR-PDMS)纤维头对葡萄酒样品进行预处理,配合气相色谱-脉冲火焰光度计检测器(GC-PFPD)对样品进行测定,最终定性并定量分析了6种含硫化合物。但是由于氧气氧化及基底效应等问题,此方法精度不高。GÜRBÜZ等[65]采用固相微萃取静态顶空采样(static-HS-SPME)技术对葡萄酒样品进行预处理,并与GC-pFPD、气相色谱-质谱联用(GC-MS)等检测方法相结合,定性测出24种含硫化合物。

3.2.1 硫醇和硫化氢的检测方法 在H2S和一些硫醇含量的测定上,考虑到它们会与葡萄酒中Cu2+及其他金属离子结合形成非挥发性化合物,在定量分析时需分别测定游离态和总物质含量。FRANCO-LUESMA等[19,66]提出在测定游离态挥发性含硫化合物时,在无氧环境下将葡萄酒样品和内标溶液加入标准顶空玻璃管中,通过HS-SPME预浓缩并进一步分析,最后利用GC-pFPD进行测定。在测定总挥发性含硫化合物含量时,需在相同条件下将葡萄酒样品和内标溶液加入到含有NaCl溶液的标准顶空玻璃管中,后续操作同上。由于葡萄酒中部分硫醇含量极低,因此需要优化样品制备和采用更灵敏的分析方法。针对痕量硫醇,TOMINAGA等[7]首次提出利用硫醇中硫基能与对羟基汞基苯甲酸汞(p-HMB)可逆性结合的特性,将痕量硫醇从葡萄酒的二氯甲烷萃取液中选择性提取出来,后续采用GC-MS检测含量;但在对4MMP进行检测和分析时只基于其中一个片段,且用于从p-HMB复合物中提取硫醇的阳离子树脂会导致3MHA分解为3MH,从而可能会导致试验结果不精确。同时,由于硫醇具有较强的还原性,在提取过程中样品很容易被氧化而影响试验结果。基于此原因,FERREIRA等[16]同样采用p-HMB提取样品,通过填充LichrolutEN树脂的载体除去干扰化合物,配合GC-MS检测含量,提高了对硫醇的选择性和检测灵敏度。SCHNEIDER等[17]基于类似的方法,在液-液萃取技术(LLE)的基础上,利用Affigel 501(一种带有苯基汞凝胶的交联琼脂糖凝胶)捕获特定的硫醇,并配合气相色谱-原子发射光谱(GC-AED)测定4MMP的含量;气相色谱与离子阱串联质谱联用(GC-ITMS-MS)测定3MH及3MHA的含量,且其检测限都低于感官阈值。这是首次使用被标记的3MH、3MHA和4MMP作为内标物,克服了样品的氧化问题。RODRÍGUEZ-BENCOMO等[18]在处理葡萄酒样品时,将4MMP肟化,并使用对苯二酚溴(PFBBr)和SPME进样系统进行原位SPE衍生化,以氘类化合物作为内标物,以降低基底效应,配合GC-MS检测3种物质的含量,分别将检测限降低至1.3 ng·L-1(3MH)、0.25 ng·L-1(3MHA)、0.03 ng·L-1(4MMP)。

3.2.2 二氧化硫的检测方法 传统的SO2测定方法,是基于淀粉作为滴定终点指示剂的碘量滴定法,由于葡萄酒中还存在多酚等还原性物质,滴定终点难以观察,这种检测方法精确性不高。为提高精确性,林军等[67]提出在酸性条件下,用碘标准溶液作为滴定剂,用电位滴定仪控制滴定终点,测定游离和总SO2的含量。测定总SO2浓度时,需先在碱性条件下,将样品中的结合态SO2释放为游离态SO2,再进行测定。为进一步提高精确度,流量法测定被提出;其原理主要是采用气体扩散装置[68],微蒸馏装置[69]或渗透蒸发装置[70]等分离装置将释放的SO2从基质中分离出来,再采用分光光度计[71]、安培计[72]、电势测定法[73]或化学荧光法[74]等检测SO2的含量。但是,以上方法大多数需要样品预处理,例如样品稀释和水解可能引起误差。基于亚硫酸盐与孔雀绿(malachite green)和副品红(pararosaniline)反应能引起颜色变化[75-78],金晓蕾等[79]建立连续流动分析仪测定不同类型葡萄酒中总SO2的检测方法。将样品在酸性条件下蒸馏,蒸馏液与甲醛及盐酸副品红反应生成红色络合物,利用连续流动分析仪(CFA)在 560 nm 波长处自动检测得出总SO2含量。OLIVEIRA等[25]采用气体扩散分离和分光光度检测技术,建立了基于多重换向概念的流动体系测定酒中游离和总SO2含量的方法。他们将未经过预处理的酒样直接注入流动系统,直接处理游离SO2或碱性水解释放结合态SO2,让其先与副品红反应,再与孔雀绿反应,期间冰冻样品,最后用紫外-可见光吸收光谱(UV-vis)检测游离和总SO2含量。

由上可知,4类含硫化合物的检测方法主要包括化学检测方法、光谱法、色谱法等(具体方法见表2)。虽然检测限不断降低、精确度不断提高,但是检测时常常需要复杂的样品预处理,且仪器昂贵,不适用于实际生产操作。这4类含硫化合物在葡萄酒中的含量通常较低,开发检测限低、精确度高且便于实际生产操作的检测方法有助于了解葡萄酒中含硫化合物的含量,利于高品质葡萄酒的生产优化。

4 葡萄酒贮藏期间4类含硫化合物的变化

贮藏陈酿是葡萄酒生产中的重要环节。在贮藏陈酿期间,葡萄酒会发生复杂的化学变化,从而影响葡萄酒的颜色、风味、口感和整体感官质量,其中4类含硫化合物在贮藏陈酿期间主要发生氧化还原反应。

4.1 4类含硫化合物在金属离子作用下的变化

葡萄酒中的金属离子主要来源于原料及葡萄酒生产中的外源添加剂,这些金属离子能引起含硫化合物含量的变化,这种非酶促氧化过程是由金属离子催化还原氧气引发的[80]。DANILEWICZ[81-83]研究表明,氧的消耗由Fe3+介导,而Cu2+增强了这一过程。这些过渡金属离子将氧气氧化为过氧化氢,然后通过Fenton反应进一步还原产生极为活泼的羟基自由基,然后与葡萄酒中化合物反应[84]。根据NEDJMA等[85]报道,在Cu2+存在的条件下,H2S可以和MeSH、EtSH发生反应生成对称和非对称三硫化物。UGLIANO等[86]研究了葡萄酒装瓶贮藏期中Cu2+对重要挥发性化合物3-MH、H2S、MeSH含量的影响,将含有不同Cu2+浓度的葡萄酒样品装瓶储藏6个月,发现Cu2+的添加会导致3-MH含量在起始阶段快速减少,同时使H2S含量增加;但是对MeSH的含量没有显著影响。VIVIERS等[87]研究了Cu2+、Fe3+、Mn2+、Zn2+和Al3+离子在储存期间对葡萄酒中H2S和MeSH含量变化的影响,结果显示这5种过渡金属离子都会影响葡萄酒中H2S和MeSH的含量,其中Cu2+的影响最为显著。KREITMAN等[27-28]研究表明,当葡萄酒中存在过量的H2S和硫醇时,会引起H2S/Cu2+、硫醇/Cu2+络合物的快速形成,并导致H2S和硫醇的损失。NIKOLANTONAKI等[88-89]则证实了Fe3+可以通过促进醌的形成,加快挥发性硫醇与多酚反应,从而影响葡萄酒中挥发性硫醇的含量。

4.2 4类含硫化合物在氧气作用下的变化

葡萄酒中的氧气可能来源于加工过程中发酵、倒罐、冷冻、灌装等工序。已有文献报道,极少量的氧气就能在陈酿期间改善葡萄酒的品质,如减少收敛感、促进酒色稳定等[90-92]。DU TOIT等[34]控制葡萄酒中溶解氧的含量,发现还原性环境下的GSH含量更高,而氧化处理会显著增加GSSG的含量。此外,挥发性含硫化合物的变化主要来源于氧化损失[93]。FRANCOLUESMA等[94]测定了无氧室温环境储存下葡萄酒中含硫化合物含量的变化情况,发现样品酒和模型酒中游离H2S、MeSH和总MeSH含量都有显著上升,但是H2S的总量变化不大。UGLIANO等[86]将样品酒分别储藏在空气和氮气环境下,结果显示低氧条件能促进H2S的积累并减少3-MH的降解。根据FERREIRA等[93]报道,在氧气含量非常小的样品酒中H2S的含量也会受影响而降低,且H2S和MeSH的含量随氧化程度增加而降低。

表2 葡萄酒中4类含硫化合物检测方法比较Table 2 Comparison between detection methods of sulfur compounds in wine

由上可知,在葡萄酒贮藏陈酿期间,由于金属离子和氧气的作用,这4类含硫化合物会发生氧化还原反应、Fenton反应或沉淀等而引起含量变化(反应方程式见表1)。贮藏陈酿期是影响葡萄酒风味的重要生产环节,优化工艺条件、控制金属离子和氧气的浓度,同时理解含硫化合物的变化机理有助于提升葡萄酒的品质。

5 葡萄酒硫味的控制

由上述文献可知,葡萄酒中含硫化合物主要来源于原料和酿酒酵母代谢,也受到原料处理、添加剂使用、贮藏陈酿等生产环节影响,因此主要从以下4个方面控制葡萄酒中的硫味。

5.1 原料控制

根据DES GACHONS等[95]报道,相较于低氮土壤,在含氮量合适土壤中生长的葡萄果实中含有更高含量的4MMP、3MH前体物质。以DAP作为氮补充剂添加到葡萄汁中会抑制MeSH、EtSH、H2S的产生,而对于3MH的影响仍无定论[96-99]。在制取汁时,皮渣浸渍可增加果汁中Cys3MH、G3MH的含量,相较于无皮渣浸渍和150 g·L-1皮渣浸渍葡萄汁,600 g·L-1皮渣浸渍葡萄汁发酵期间GSH产量更高[33,100]。根据MAGGU等[101]报道,在长时间表皮接触(skin contact)制汁时,较高压力产出的压榨果汁3MH-S-Cys含量更高,但GSH含量较低。PATEL等[102]报道,相较于自然出汁(free run juice),压榨果汁及其成品葡萄酒的3MHA、3MH含量和酸度值较低,GSH含量下降较快。此外,发酵前补充GSH会引起成品葡萄酒中硫醇浓度的降低,而压榨果汁时的巴氏杀菌过程会引起成品葡萄酒中3MHA含量增加,3MH含量降低[102]。

5.2 酵母筛选和优化

酵母的种类对葡萄酒风味有重要影响,特别是挥发性含硫化合物产量[103-104]。BELJAK等[105]通过比较8种酿酒酵母对葡萄酒中SO2含量的影响,发现H2S阳性酿酒酵母更利于SO2产生,且发酵初始糖浓度较高时,SO2产率更高。宫雪等[106]筛选得到的HO2、E22酵母菌株H2S产率低,且酒样感官品质与商业酿酒酵母VL1、RC212、C2C无明显差异。EGLINTON等[107]比较Saccharomyces bayanus酵母和Saccharomyces cerevisiae酵母对葡萄酒品质的影响,发现Saccharomyces bayanus酵母发酵的葡萄酒含有更多的甘油、琥珀酸、乙醛和SO2,较少的乙酸、苹果酸和乙酸乙酯,且气味特征不同。DUBOURDIEU等[108]研究得出,相较于Saccharomyces cerevisiae酵母VL3和EG8菌株,Saccharomyces bayanus酵母能产生更多的4MMP。

根据HARSCH等[109]报道,分别敲除酿酒酵母中17个与硫代谢相关的基因,可显著提升或降低3MH和3MHA的产量,如单独敲除CYS3、CYS4或MET17的菌株3MH和3MHA的产量有显著提升,而单独敲除SER1或SHM2的菌株3MH和3MHA产量有所降低。SWIEGERS等[110]通过克隆编码一种色氨酸酶的大肠杆菌tnaA,使其在酵母菌株中表达,可使4MMP和3MH的产量提升24倍。DUFOUR等[111]利用一个天然的URE2突变体,通过分子标记驱动回交技术(backcrosses driven by molecular markers)在酿酒酵母启动子引入等位基因,发现URE2性状遗传能够增加4MMP和3MH的产量。

5.3 优化SO2的使用

控制外源SO2的添加,可减少酵母可利用的硫元素,从而减少异味产生。LUSTRATO等[112]提出使用低电流技术(LEC)替代葡萄酒生产中的二氧化硫添加剂,结果显示LEC降低了尖型酵母(Apiculate yeasts)的存活时间并增加其死亡率,而不影响酿酒酵母的生长和存活。LEC控制酵母菌群的作用与SO2相当,同时减少硫元素的摄入,有利于减少异味产生。柳琪等[26]得出改进或规范生产操作能减少葡萄酒中SO2的含量:1)尽量保证原料完好无损,受病虫害、破损及霉变的葡萄原料会引起葡萄醪中可与SO2结合的物质含量增加;2)尽量保证酵母的纯度,使用优良酵母菌系,能抑制产SO2菌系的活性;3)加快葡萄酒的澄清,减少葡萄酒中的悬浮物与SO2结合;4)山梨酸对酵母菌有抑制作用,装瓶时结合SO2使用,可减少SO2用量;5)维生素C具有抗氧化作用,装瓶时可将维生素C代替或结合SO2使用。

5.4 金属盐处理

此外,生产中常用硫酸铜法、柠檬酸铜法和银盐法降低葡萄酒异味[113-114]。根据VELA等[115]报道,铜盐处理可立即降低葡萄酒中游离H2S和MeSH的含量,并减缓低氧储存期间游离H2S的增加。这3种方法各自存在着不足之处:1)硫酸铜法 硫酸铜可与H2S和硫醇发生反应产生沉淀,但不能与二硫化物反应,而在储存期间二硫化物易被水解还原成硫醇,产生不良气味;2)柠檬酸铜法 使用时试剂用量大,释放的铜离子较少,反应效率较低;3)银盐法 处理后酒样必须经过皂土澄清,增加处理难度和成本。此外,用铜离子与H2S、硫醇反应产生沉淀时,反应可能不完全,导致少部分产物残留,后分解重新生成H2S和硫醇,且上述3种处理方法都会对葡萄酒口感产生负面影响。

除上述方法外,控制贮藏陈酿期间葡萄酒中过渡金属离子和氧气的含量(见4.1,4.2),也有利于降低异味。还可以泼洒葡萄酒,通过挥发和氧化除去异味[116]。

6 展望

通过上述分析可知,葡萄酒中4类含硫化合物对葡萄酒的风味有显著影响,但是在实际生产时无法精确控制其含量。这主要是因为目前对4类含硫化合物的来源和变化情况仍不清楚,特别是发酵阶段变化机理及贮藏陈酿期间的变化机理。在今后的研究中可以从以下几个方面开展:

一是优化含硫化合物的检测方法,现有的检测方法仍存在样品易污染、检测时间长、精确度低等问题。未来研究可从样品处理方法和检测方法分别开展,优化现有的样品分离方法、开发更高效的柱前衍生化试剂、优化色谱条件等,缩短检测时间、降低检测限、增加精确度。

二是探究葡萄酒发酵和贮藏陈酿期间4类含硫化合物含量变化及机理。未来在机理研究中可采用模型酒形式,控制模型酒中化合物的种类和含量,简化反应的环境,利于探究各类化合物的变化情况。

三是改进葡萄酒生产工艺,从原料种植环节到产品封装环节层层优化。首先,在葡萄原料种植环节,选择合适的土壤、肥料和温湿度等,提升葡萄果实品质。其次,在葡萄采收环节,改进采收技术,避免损坏果实。第三,在榨汁环节,选择合适的压力、氧气含量、皮渣含量,提升葡萄汁品质。第四,在二氧化硫使用环节,改进使用方法,减少用量,或开发合适的替代品,以减少产品中二氧化硫含量。第五,在酿造环节,筛选或生物技术改良酵母菌株,选择合适的温湿度、含氧量、添加剂等,减少不愉快风味。第六,在贮藏陈酿期间,选择合适的温湿度、含氧量、金属离子浓度等,进一步提升葡萄酒品质,并减少不愉快风味。最后,在葡萄酒封装环节,优化洗瓶、灌装工艺,选择合适的瓶塞、灭菌条件等。

猜你喜欢

硫醇含硫谷胱甘肽
一种应用于高含硫气井的智能取垢器系统设计
含硫柳汞废水处理方法研究
液化气催化氧化脱硫醇的新一代催化剂
硫醇(酚)对PVC的热稳定作用——性能递变规律与机理
蚯蚓谷胱甘肽转硫酶分离纯化的初步研究
浅析液化气脱硫醇技术
全球向低含硫清洁燃料看齐
分光光度法结合抗干扰补偿检测谷胱甘肽
First Perfume Which Smells Better the More You Sweat
TBBPA对美洲鳗鲡谷胱甘肽代谢相关指标的影响