熊去氧胆酸通过干扰白介素-10对小鼠肥胖风险的影响
2020-03-17高黎黎张昊
高黎黎 张昊
[摘要]目的:探索熊去氧膽酸(UDCA)通过干扰脂肪组织中白介素-10(IL-10)的水平,对高脂饲料诱导小鼠肥胖风险的影响。方法:将C57BL/6J雄鼠简单随机化分为:Control组、DIO组、+UDCA组及+UDCA+IL-10组,于诱导0、6及8周后测量体重。取小鼠肠系膜白色脂肪(mesenteric white adipose tissue,mWAT),ELISA和western-blot法检测mWAT中IL-10和IL-10Rα的蛋白浓度;RT-PCR法检测产热基因的表达水平。结果:诱导6周后,Control组小鼠体质量较其它高脂诱导组低,差异有统计学意义(P<0.05);8周后,高脂诱导小鼠中,DIO组小鼠体重最高,+DUCA+IL-10组次之,+DUCA组最低。DIO组mWAT中IL-10含量较Control组高(37.13pg/mg vs 16.29pg/mg, P<0.01),+DUCA组的IL-10含量(19.04pg/mg)较DIO组低(P<0.01),+DUCA+IL-10组的IL-10含量(33.87pg/mg)较+DUCA组高(P<0.05)。此外,各组mWAT中IL-10Rα水平的变化趋势与IL-10相似。+DUCA组mWAT中多个线粒体产热基因的表达较DIO组上调(P<0.05)。结论:UDCA可减少高脂诱导小鼠白色脂肪中IL-10和IL-10Rα水平,增加脂肪细胞线粒体产热基因的表达,降低小鼠的肥胖风险;该效果可被外源性IL-10削弱。
[关键词]熊去氧胆酸;白介素-10;产热基因;肥胖;风险
[中图分类号]R589 [文献标志码]A [文章编号]1008-6455(2020)01-0068-04
Effects of Ursodeoxycholic Acid on the Risk of Obesity in Mice Via Inhibiting Interleukin-10
GAO Li-li1,ZHANG Hao2
(1.Center for Medical Research and Innovation;2.Department of General Surgery,Shanghai Pudong Hospital/Fudan University Pudong Medical Center,Shanghai 201399,China)
Abstract: Objective To explore the effect of ursodeoxycholic acid(UDCA) on the risk of obesity via inhibiting interleukin-10(IL-10) level in high-fat diet-induced mice. Methods Male C57BL/6 mice were divided into four groups using simple random method, including Control group, DIO group, +UDCA group and +UDCA+IL-10 group, body weight were monitored at baseline, 6 weeks and 8 weeks after feeding. Meanwhile, the mesenteric white adipose tissue (mWAT) was collected, and the IL-10 and IL-10Rα protein level were detected by ELISA and western blot assays respectively, then the expression of thermogenic genes were analyzed by real-time PCR. Results Compared with other groups, the body weight value of the Control group was the lowest following 6 weeks induction (P<0.05). After 8 weeks, in high-fat diet-induced mice, the DIO group had the highest body weight, followed by the the +DUCA+IL-10 group and the lowest in the +DUCA group (P<0.05). In addition, the IL-10 level of mWAT in DIO group was higher than that in the Control group(37.13pg/mg vs 16.29pg/mg, P<0.01), it was lower in the +UDCA group(19.04pg/mg) than that in the DIO group (P<0.01), and it was higher in the +UDCA+IL-10 group(33.87pg/mg) than that in the +UDCA group (P<0.05). As well, the trend of IL-10Rα levels among the groups was similar with IL-10. Whereas most of the mitochondrial thermogenic genes abundance were down-regulated in the DIO group, and up-regulated in the +DUCA group (P<0.05). Conclusion We conclude that UDCA could reduce IL-10 and IL-10Rα levels in WAT, increase mitochondrial thermogenic genes expression in adipocytes, and finally alleviate the risk of obesity in high-fat-diet-induced mice. Importantly, the treatment of exogenous IL-10 could eliminate the role of UDCA in resisting obesity.
Key words: ursodeoxycholic acid; interleukin-10(IL-10); thermogenic genes; obesity; risk
近年来,一些研究证明了免疫系统对脂肪组织的增殖和活化有明显影响,强调了抗炎(Ⅱ型)细胞因子在调节脂肪产热中的重要性。嗜酸性细胞在刺激下产生白细胞介素-4(IL-4)/IL-13,激活产热过程[1-2]。IL-33激活2型先天淋巴细胞(IL-C2),促进米色脂肪生源论[3]。最近,IL-33被证明通过调节解偶联蛋白1(uncoupling protein 1,UCPl)的剪接促进脂肪细胞进行非耦合呼吸[4]。白细胞介素-10(interleukin-10,IL-10)是一种多细胞源、多功能的细胞因子[5]。近年来,有研究发现IL-10可通过调节脂肪细胞的染色质重构,限制白色脂肪组织的产热和能量消耗[6]。因此,寻找有效药物阻断IL-10限制脂肪能耗或将成为治疗高脂饮食诱发的代谢紊乱的研究目标。
熊去氧胆酸(UDCA)是亲水性胆汁酸(BA)并已作为胆汁淤积和慢性肝炎的保肝药物;它也是经美国食品药品管理局批准用于治疗原发性胆汁胆管炎(PBC)的一种药物[7-8]。最近研究显示,UDCA能调节多个分子靶点,发挥抗炎、降脂和改善糖代谢的作用,具有治疗肥胖及肥胖所致的代谢性疾病的潜能[9]。但其具体的作用机制不是十分清楚。随着现代社会肥胖和肥胖相关代谢性疾病的高发,阐明UDCA作为一种安全、有效的肥胖治疗手段的机制备受关注。有研究显示,UDCA能抑制高脂诱导小鼠肝脏IL-10的表达[10]。那它对脂肪内IL-10的调控如何,能否通过对IL-10水平的干扰影响脂肪组织的能量代谢水平,缓解肥胖。本实验以高脂诱导小鼠为模型,探索UDCA通过干扰脂肪组织中IL-10的水平,对高脂饲料诱导C57BL/6J小鼠肥胖风险的影响,为研究UDCA减轻机体肥胖的作用机制提供理论依据。
1 资料和方法
1.1 動物模型:SPF级雄性C57BL/6J小鼠,8周龄, 体质量(20±2)g,购买自上海斯莱克实验动物有限责任公司[SCXK(沪)2012-0002]。简单随机化分为4组,每组8只:①Control组(普通喂养);②DIO组(高脂诱导,美国,Research Diets,D12492);③+UDCA组(高脂+UDCA诱导);④+UDCA+IL-10组(高脂+UDCA+IL-10诱导)。从第7周起,对+UDCA组、+UDCA+IL-10组行UDCA灌胃2周(50mg/kg,1次/d,UDCA原液溶解在33%乙醇,33%二甲亚砜,33%吐温-80中,使用时按1:50稀释于0.5M NaCl溶液;UDCA,Sigma-Aldrich,U5127)。第8周起,对+UDCA+IL-10组行IL-10腹腔注射干预1周(10μg/kg,隔天1次,共计4次;IL-10,PEPRO-TECH,210-10)。干预结束后处死小鼠,取肠系膜脂肪组织(mesenteric white adipose tissue, mWAT)冻存。
1.2 方法
1.2.1 体质量检测:分别检测各组小鼠基线和诱导6周及8周后的体质量,检测前禁食6h,正常给水。
1.2.2 Real-time PCR:按说明书将储于液氮的mWAT取50g研磨成匀浆后,提取总RNA并测其浓度及A260:A280值,取比值1.8~2.0者,然后逆转录成cDNA,采用两步法PCR扩增标准程序:预变性,95℃ 10min,1个循环进行cDNA变性;PCR反应:95℃ 15s,59℃ 1min。40个循环放大;熔化曲线分析(60℃~95℃),以验证单个产品的存在。引物由上海生工生物技术有限公司合成。内参为GAPDH基因,使用 delta-delta Ct方法计算mRNA水平:2-ΔΔCT,ΔΔCT=(Ct目标基因-CtGAPDH)实验组-(Ct目标基因-CtGAPDH)对照组,见表1。
1.2.3 Western-blot法:组织匀浆后,14 000r/min离心5min提取蛋白,取上清定量后加入上样缓冲液于8%的SDS-PAGE,完毕后转膜。牛奶封闭后,分别加入1:1 000的IL-10Rα抗体(ab225820,abcam)及1:1 000的β-actin抗体(4967L,CST)4℃孵育过夜后,TBST 漂洗2遍,加入用辣根过氧化物酶标记的二抗,室温轻摇1h,洗膜后曝光。
1.2.4 ELISA法:组织样本mWAT(0.3g)置于800μl预冷提取缓冲液(100mM Trizma Base pH7.5, 10mM EDTA,100mM NaF,10mM Na4P2O7,10mM Na3VO4,2mM PMSF,0.1mg/ml 抑肽酶)。匀浆后,添加80μl 10% Triton X-100至样品,冰上放置30min,4℃离心40min(20817g)。吸取上清,以牛血清白蛋白为参照,采用Bradford法测定蛋白浓度。定量测定IL-10蛋白浓度,ELISA(DuoSet ELISA、R&D Systems,Minneapolis,MN,USA),重复测量,取平均值。
1.3 统计学分析:采用SPSS 22.0软件进行数据分析,数据采用x?±s形式表示,多组间比较采用单因素方差分析,组间两两比较采用t检验,检验水准α=0.05。采用GraphPad Prism 7软件以x?±s形式作图。
2 结果
2.1 各组小鼠体质量比较:各组小鼠的体质量基线水平比较差异无统计学意义(F=1.79,P>0.05)。造模8周后,与Control组比较,DIO组小鼠体质量增长较为明显,差异有统计学意义(t=16.86,P<0.001);与DIO组相比,+UDCA组体质量降低(t=4.55,P<0.001);与UDCA组相比,+UDCA+IL-10组体质量增加,差异有统计学意义(t=2.91,P<0.05)。见表2。
2.2 各组小鼠mWAT中IL-10浓度比较:ELISA测定mWAT的IL-10蛋白浓度,结果显示DIO组IL-10含量为37.13pg/mg,较Control组16.29pg/mg增高(t=4.04,P<0.01),说明高脂诱导可以引起小鼠mWAT中IL-10含量的增高;+DUCA组IL-10含量为19.04pg/mg,较DIO组下降(t=3.51,P<0.01),说明+UDCA干预可以引起小鼠mWAT中IL-10的含量减低;+DUCA+IL-10组IL-10含量为33.87pg/mg,较+DUCA组增加(t=2.87,P<0.05),腹腔IL-10注射可提高mWAT中IL-10的浓度。见图1。
2.3 各组小鼠mWAT中IL-10Rα表达水平:Western-blot检测结果显示,DIO组mWAT中IL-10Rα的蛋白水平较Control组和+DUCA组高,+DUCA+IL-10组IL-10Rα的蛋白水平较Control组和+DUCA组高,与IL-10含量的变化趋势相似,见图2。
2.4 各组小鼠mWAT中线粒体产热基因的表达: 以各组小鼠mWAT中UCP1、Cidea、Cox8b、pGC-1α及Pdgfrα基因表达水平作为脂肪产热指标,RT-PCR结果显示,与Control组相比,DIO组中UCP1、Cidea及pGC-1α的表达下调,差异有统计学意义(P<0.01);与DIO组相比,+UDCA组中UCP1、Cidea、Cox8b及pGC-1α的表达上调,差异有统计学意义(P<0.05);与+UDCA组相比,+UDCA+IL-10组中UCP1、Cidea、Cox8b及pGC-1α的表达下调,差异有统计学意义(P<0.05)。UDCA干预能提高高脂诱导小鼠mWAT中线粒体UCP1的水平,促进产热相关基因的表达,IL-10干预会减弱这种效应,见图3。
3 讨论
IL-10是目前公认的炎症与免疫抑制因子,主要通过信号转导及转录活化因子3 (signal transducer and activator of transcription 3,STAT3)发挥抗炎与免疫抑制作用[11]。关于IL-10对脂肪和能量稳态作用的观点却不同。Mauer等认为IL-10不具有抵抗肥胖的功能[12-13]。但P Rajbhandari等指出IL-10能参与抑制脂肪细胞产热基因的表达,促进饮食诱导肥胖的发生;IL-10Rα是富集于白色和米色脂肪细胞表面的IL-10受体的亚单位,并随着分化水平和机体肥胖程度逐渐上调[6]。本研究显示高脂诱导能增加小鼠白色脂肪mWAT中IL-10浓度和IL-10Rα的表达,与后者研究结果基本一致。
在哺乳动物体内,存在3种类型脂肪组织:白色脂肪组织(White adipose tissue,WAT)、棕色脂肪组织(Brown adipose tissue,BAT)和米色脂肪组织。其中,一般情况下WAT以甘油三酯的形式储存能量,线粒体含量少。BAT含有豐富的线粒体,线粒体中存在的UCP1可将部分用于制造ATP的能量转化为热量。然而,人们在WAT中发现了米色脂肪组织与BAT相似,米色脂肪细胞的生成通常伴随着机体的产热作用增强,脂肪代谢增加及体质量减轻[14]。米色脂肪组织可由前体细胞和白色脂肪细胞转分化而来,表达高水平的UCP1[15-16]。因此,将丰富的白色脂肪转化为米色脂肪,促进脂肪细胞线粒体UCP1产热,是对抗肥胖的有效方法。
研究发现,高脂饮食导致的肥胖大鼠模型体内胆汁酸的水平明显降低[17],而给予小鼠UDCA后能够改善高脂饮食诱导的肥胖[18]。一方面,是由于胆汁酸会通过激活TGR5依赖型2型碘甲状腺原氨酸脱碘酶(D2)来增加小鼠BAT和人类骨骼肌的能量消耗,D2是负责将甲状腺素(T4)转化为三碘甲状腺原氨酸的主要酶(T3)[19-20]。生物活性T3诱导线粒体生物发生和UCP1的表达,促进游离脂肪酸氧化和增加能量消耗[21-22]。另一方面,本文通过动物实验探索发现,UDCA对限制热量消耗的分子有调节作用。UDCA干预可降低IL-10及IL-10Rα蛋白水平,提高线粒体部分产热基因的表达,缓解IL-10对肥胖小鼠脂肪能量消耗的抑制;但外源性IL-10的输入又会增加小鼠白色脂肪中IL-10和IL-10Rα,逆转UDCA抵抗肥胖风险的作用。
综上所述,UDCA干预可以降低高脂诱导小鼠白色脂肪中IL-10和IL-10Rα水平,增加脂肪细胞线粒体产热基因的表达,预防小鼠的肥胖风险,该效果可被外源性IL-10削弱。
[参考文献]
[1]Qiu Y,Nguyen KD,Odegaard JI,et al.Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat[J].Cell,2014,157(6):1292-1308.
[2]Rao RR,Long JZ,White JP,et al.Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis[J].Cell,2014,157(6):1279-1291.
[3]Lee MW,Odegaard JI,Mukundan L,et al.Activated type 2 innate lymphoid cells regulate beige fat biogenesis[J].Cell,2015,160(1-2):74-87.
[4]Odegaard JI,Lee MW,Sogawa Y,et al.Perinatal licensing of thermogenesis by IL-33 and ST2[J].Cell,2016,166(4):841-854.
[5]Saraiva M,OGarra A.The regulation of IL-10 production by immune cells[J].Nat Rev Immunol,2010,10(3):170-181.
[6]Rajbhandari P,Thomas BJ,Feng AC,et al.IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure[J].Cell,2018,172(1-2):218-233.
[7]Ali AH,Tabibian JH,Carey EJ,et al.Emerging drugs for the treatment of Primary Biliary Cholangitis[J].Expert Opin Emerg Drugs,2016,21(1):39-56.
[8]Ratziu V,De Ledinghen V,Oberti F,et al.A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis[J].J Hepatol,2011,54(5):1011-1019.
[9]Lefebvre P,Cariou B,Lien F,et al.Role of bile acids and bile acid receptors in metabolic regulation[J].Physiol Rev,2009,89(1):147-191.
[10]Chen YS,Liu HM,Lee TY.Ursodeoxycholic acid regulates hepatic energy homeostasis and white adipose tissue macrophages polarization in leptin-deficiency obese mice [J].Cells,2019,8(3).pii:E253.
[11]Moore KW,De Waal Malefyt R,Coffman RL,et al.Interleukin-10 and the interleukin-10 receptor[J].Annu Rev Immunol,2001,19:683-765.
[12]Mauer J,Chaurasia B,Goldau J,et al.Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin[J].Nat Immunol,2014,15(5):423-430.
[13]Miller AM,Wang H,Bertola A,et al.Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient mice[J].Hepatology,2011,54(3):846-856.
[14]鄧露露,欧子豪,彭永正.米色脂肪细胞的诱导因子—抗肥胖的新策略[J].实用医学杂志,2017,33(19):3162-3165.
[15]Wu J,Bostrom P,Sparks LM,et al.Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J].Ce11,2012,150(2):366-376.
[16]Schulz TJ,Huang P,Huang TL,et al.Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat[J].Nature,2013,495(7441):379-383.
[17]李德刚,高敏,沙妙青,等.从胆汁流量和胆汁酸成分改变初探“胆道不利是肥胖发病的中心环节”[J].世界中医药,2014,9(3):350-354.
[18]马慧娟,刘晶,张柳,等.胆汁酸对高脂诱导肥胖小鼠的血糖和体重的影响及安全性分析[J].解放军医药杂志,2015,27(10):25-28.
[19]Watanabe M,Houten SM,Mataki C,et al.Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[J].Nature,2006,439(7075):484-489.
[20]Thomas C,Gioiello A,Noriega L,et al.TGR5-mediated bile acid sensing controls glucose homeostasis[J].Cell Metab,2009,10(3):167-177.
[21]Klingenspor M,Ivemeyer M,Wiesinger H,et al.Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation [J].Biochem J,1996,316(Pt 2):607-613.
[22]Bianco AC,Sheng XY,Silva JE.Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis[J].J Biol Chem,1988,263(34):18168-18175.
[收稿日期]2019-05-20
本文引用格式:高黎黎,张昊.熊去氧胆酸通过干扰白介素-10对小鼠肥胖风险的影响[J].中国美容医学,2020,29(1):68-71.