防蓝光显示技术进展
2020-03-13王晓瑜陈东川朱书贤李立东
王晓瑜,陈东川,朱书贤,李立东*
(1. 北京科技大学 材料科学与工程学院,北京 100083; 2. 北京京东方显示技术有限公司,北京 100176)
1 引 言
光辐射与人体健康息息相关。适量的光照,如紫外线照射,可起到杀菌作用,并可促进人体对钙、磷等元素的吸收,增强骨骼质量。但过量的光辐射会对人体产生危害,引起人体器官发生不同程度的病变[1]。因此,光生物安全性一直受到人们广泛的关注。在可见光光谱中,蓝光波长短,能量高,对人体伤害也大。因此,蓝光危害成为人们关注的重点,也是目前的研究热点[1-3]。
显示和照明领域都面临蓝光危害的威胁。相同之处在于两者都是发光体,均包含蓝光波段,但不同之处在于显示产品发光颜色不断变化,且光线长时间照射人眼。与照明产品相比,显示产品的蓝光危害评价和防蓝光设计对保障人体的光生物安全性更加重要。因此,针对显示产品的防蓝光研究具有重要的意义。本文针对显示产品的防蓝光技术,首先阐述了蓝光危害的作用机制、各类危害的机理和评估方法、标准;然后分析了显示产品中影响蓝光危害因素;并进一步综述了目前防蓝光显示技术新进展;最后对防蓝光显示技术进行了进展总结和趋势展望。
2 蓝光危害机理
2.1 光辐射危害作用机制
皮肤是人体受光照面积最大的器官,眼睛是人体对光照最敏感的器官,所以光生物安全性主要是指光辐射对皮肤和眼睛的安全性[1]。光辐射对人体皮肤和眼睛的影响主要通过光化学反应和热效应两种作用机制产生[2]。其中,光化学反应影响机制是指当短波长光照射人体组织细胞时,激发人体生物分子中的电子,造成细胞分子化学键断裂或重排。过量光照引起的光化学反应会破坏原先配对的双链DNA,同时,该光化学反应通常还会产生高活性的自由基,大量的自由基与DNA作用,容易导致细胞结构发生改变。如果过量的自由基与人眼视网膜的锥状体或杆状体等感光器作用,易造成感光器细胞功能丧失,甚至细胞死亡。特别严重时,DNA的破坏可能会引起癌变。光化学反应危害程度与光辐射的剂量度和时间累积有关,低剂量、长时间辐照与高剂量、短时间辐照具有相同的危害结果[2-3]。另外,光化学反应对光辐射的特征波长非常敏感。波长较短时,光波能量较强,光化学反应程度较大;波长较长时,光波能量减弱,反应程度较小。光辐射的热效应是指光辐射会引起人体被辐照部分器官组织的温度升高,这样会造成机体蛋白质失活或导致细胞结构热致损坏,最终引起各种炎症等病变。当辐射光波长较短时,光化学反应起主要作用,反之,热效应起主要作用[3]。
当人眼被光辐照时,不同波长的辐照光在人眼中的穿透深度不一样[4-5],如图1所示。这是因为人眼各个组织结构对不同波长光辐射的吸收和透过程度不同。例如,人眼晶状体对紫外和近紫外光吸收很强,但对可见光吸收很弱,所以大部分紫外短波长光辐射被晶状体吸收,而大部分可见光则穿过晶状体到达视网膜。另外,红外波段的光,进入人体组织后主要转化为热,被表层细胞或晶状体消耗。因此,可见光波段光辐射主要对人眼视网膜产生影响。
图1 不同波长光辐射在人眼组织中的穿透深度[3]Fig.1 Penetration depth of different wavelengths of light radiation in human eye tissue[3]
光在人眼组织中的穿透特性还与晶状体的透光特性相关,而晶状体的透光特性与人类年龄有关[6-10]。这是由于晶状体的前囊膜厚度会随着年龄的增长而不断增厚。膜厚的增加伴随着质量和密度的增大,导致对光的吸收增强,因此透过光强减少。图2所示为1岁、18岁、21岁、46岁、62岁、73岁和76岁人眼晶状体透过谱。从图中曲线可知,年龄越小,透过率越高,且对蓝光波段透过率越强。因此,对于青少年群体而言,光辐射易穿过眼睛晶状体,损伤视网膜;而对老年群体,光辐射易被晶状体吸收,增大白内障患病风险。
图2 不同年龄人眼晶状体透过谱[10]Fig.2 Eye lens transmission spectra of different ages[10]
人眼受过量的光辐射容易发生多种病变[3,5,11-12]。由图2可知,短波长的紫外辐射主要被晶状体,或人眼前部区域的角膜和结膜等组织吸收。当紫外光照射较强时,人眼角膜和结膜最外层细胞在短时间内就易被破坏,引发光致角膜炎或光致结膜炎。长期的紫外光照射会损害人眼晶状体而引发白内障。这是由于晶状体在光辐射下发生光化学反应,使组成晶状体的特殊蛋白质变性,细胞内色素沉着,使晶状体不透光。如继续增加辐照时间甚至会导致视觉丧失。并且晶状体组织不同于其他组织,它不生成新的细胞,所以以上病变不可自行恢复。除紫外波长外,长时间红外波段的光辐射同样会损害晶状体,造成白内障。位于紫外和红外波段之间的可见光,大部分可照射到视网膜上。高剂量的可见光辐照也会在视网膜上发生化学反应,造成视网膜损伤。在视网膜上的光化学反应,与光辐射波长紧密相关,主要由蓝光波段光辐射引起,而长于500 nm的波段对其影响较小。因此过量、长时间蓝光辐照对视网膜的损害称为蓝光危害。
2.2 蓝光危害的分类
由前所述,蓝光辐射主要是对人眼视网膜造成伤害。该伤害可细分为两类:视觉损害和非视觉损害。
2.2.1 视觉损害
视觉损害是指蓝光辐射对视网膜上视锥细胞和视杆细胞两种视觉细胞造成损伤,引起人眼视觉下降等病变。
1966年,Noell等人首次在小鼠实验中观察到蓝光会引起视紫红质介导的光损伤,并会进一步损伤视杆细胞,引起视觉病变[12]。Grimm等人也进行了不同的光照环境下的小鼠实验,得出蓝光因具有对视紫红质的光逆转作用而对视网膜造成损伤[13-14]。Ham等人继续研究了不同波长光辐射对视网膜的影响程度。结论显示,短波长的光辐射造成的视网膜光化学损伤更为严重,尤其在400~500 nm范围,最大值在440 nm处[15-18]。该光化学反应通常被认为有两种机理。第一种是视网膜可不断吸收蓝光,蓝光能量的累计易造成视网膜细胞被氧化而损伤,且使视网膜上皮组织中具有光毒性的脂褐素含量增加。过量的脂褐素会形成玻璃疣,阻止视网膜色素上皮细胞(RPE)向感光细胞提供营养,致使感光细胞萎缩和死亡,最终造成视网膜视觉损伤[9]。如图3(a)
(a)在光辐射作用下脂褐素的形成过程(a)Formation process of lipofusion in respose to radiation
(b)脂褐素增加可能发生继发性炎症反应(b)With increasing amount of lipofuscin, a secondary in flammatory response may occur.图3 RPE细胞衰老的示意图[9]Fig.3 Schematic illustration of ageing in RPE cells[9]
所示,在光辐射作用下,感光体外层受到其多不饱和脂质的过氧化作用,它们的尖端被RPE脱落和吞噬,在溶酶体中被消化;残留的物体最终形成脂褐素。短波辐射(蓝光)将对线粒体和DNA等几种重要结构,诱导产生蓝光损伤,包括由脂褐素发色团介导的氧化机制。如图3(b)所示,随着年龄的增长,RPE中脂褐素(红色符号)的量将显著增加,使细胞更容易受到辐射和氧化损伤。一些未消化的终产物从RPE细胞挤出到细胞外空间(基底层状沉积物)和布鲁赫膜(基础线性沉积物),其中可能发生继发性炎症反应(临床上被认为是软玻璃疣)[9]。第二种机理是视网膜细胞中含有视黄醛(A2E),A2E受蓝光激发后,会产生自由基离子,这些自由基会增大A2E对视网膜色素上皮的损坏作用从而引起视网膜色素上皮的萎缩,更进一步将引起光敏感细胞内一些蛋白酶失活而导致细胞死亡。光敏感细胞的功能是接受入射光,并把光信号转换成电信号,再通过视觉神经将电信号传递给大脑后成像。因此,光敏感细胞的死亡将会直接导致视觉逐渐下降甚至完全丧失[19]。
2.2.2 非视觉损害
除视觉损害外,人们逐渐发现可见光尤其是蓝光,还对人体睡眠、生物钟等节律调节方面产生负面影响,该影响称为非视觉损害。2002年,美国布朗大学的Berson等人首次发现了哺乳动物视网膜的第三类感光细胞,即本征感光视网膜神经节细胞(ipRGC)[20]。该细胞可在视觉杆细胞和视觉锥细胞被阻断的情况下,依然对光辐射发生响应,并输入到人体昼夜节律起搏器——下丘脑的视交叉上核(SCN),参与调节许多人体光生物效应,包括人体生命体征的变化、激素的分泌和兴奋程度等。图4为人眼视觉和生物传导神经通路示意图[21],人眼视网膜上具有3种、2类感光细胞,其中视觉相关的视锥和视杆感光细胞与大脑视皮层神经连接(图中细点线),视皮层神经主要控制人体的视觉感知,因此这一神经通路称为视觉通道;而ipRGC与视交叉上核(SCN)和松果体神经相连(图中粗点线)[19-20]。松果体被称为人体的生物钟,起到调节人体节律起搏规律的作用,与视觉无关,因此这一神经通路称为非视觉通道。
图4 视觉和生物传导神经通路[21]Fig.4 Visual and biological conduction neural pathway[21]
ipRGC主要通过扰乱褪黑色素和皮质醇的分泌来扰乱人体节律[22]。褪黑色素由松果体分泌,被称为睡眠激素,主要调节人体睡眠节律。褪黑色素的增加会使人体感觉困倦,反之,褪黑色素减少会使人感觉清醒精神。皮质醇由肾上腺分泌,被称为压力激素,主要调节人体情绪。与褪黑色素相反,皮质醇增加会使人感觉精力充沛,注意力集中,而减少会使人产生疲倦。人体中,白天分泌皮质醇较多,而分泌褪黑色素较少,使人精神,促进工作和学习,而晚上反之,促进睡眠。因此,褪黑色素和皮质醇的交替周期作用,形成人体周期节律,即“生物钟”[22-24]。
ipRGC对生物钟的影响原理是:ipRGC被光线刺激后产生响应,会抑制松果体分泌褪黑色素,并刺激肾上腺分泌皮质醇,扰乱人体生物钟。在发现ipRGC的非视觉效应后,Lockley等人进一步对各激素的光照敏感性进行了研究[25],研究表明,人体激素的分泌情况与所受的光照波长有关。视觉杆细胞和锥细胞在明亮环境下,对555 nm波长的光辐射视觉敏感性最强,暗环境下对507 nm的光敏感性最强。而ipRGC非视觉感光细胞对更短波长的蓝光敏感性最强。很多研究者针对非视觉光敏感性最强波长进行了实际测试,Brainard等人实验发现,人体褪黑色素敏感性最强波长为464 nm[26],但Thapan发现为459 nm[27]。Hankins和Lucas等人通过研究人眼的视网膜电流图,发现最大响应波长为483 nm[28]。另外,McDougal和Gamlin等人通过研究人眼瞳孔大小,发现最大响应波长介于470~490 nm之间[29]。
2.3 蓝光危害评估方法及标准
2.3.1 蓝光危害评估方法
如前所述,蓝光危害程度,无论视觉损害还是非视觉损害,都与波长相关。因此可用波长相关的蓝光危害函数曲线来表示。一方面由于晶状体的吸收,紫外光等更短波长的光不能到达视网膜,另一方面视网膜对蓝光波段有最强的损伤敏感度。因此,随波长增加,蓝光危害曲线先增大,后减小。视觉损害相关的蓝光危害曲线用B(λ)表示,非视觉损害相关的节律危害曲线用C(λ)表示。B(λ)函数曲线已被国际公认,而C(λ)函数曲线目前仍有不同理论,还有待相关专家和学者日后进一步研究,但目前较为常用的是Brainard等人根据实测结果提出的理论[26]。此处危害曲线仅表示不同波长的相对危害程度。在实际情况中,蓝光危害程度与光辐照绝对量相关,且为时间和各波长的累积效果,因此两条曲线是加权函数曲线。B(λ)和Brainard版C(λ)函数曲线如图5所示,其中V(λ)为表征人眼对可见光视觉敏感度的视敏函数,用以对比。
图5 蓝光危害加权函数B(λ)、C(λ)和人眼视敏函数(明视觉)V(λ)[30]。Fig.5 Blue light hazard weighting functions B(λ), non-visual effect functions C(λ) and human photopic vision function V(λ) [30].
虽然蓝光危害是由光源的绝对辐射能量决定,但可通过上述加权函数曲线对光源光谱分布进行蓝光危害加权效率评估,定义为蓝光危害效率指数Eb’,可由式(1)计算:
(1)
其中:P(λ)为光源物理能量的光谱分布,也可将其通过视敏函数V(λ)和光谱亮度效能值683 lm/W,换算为光度公式,B(λ)为蓝光危害光谱加权函数。对于非视觉蓝光危害,可采用相同的加权计算方法,用以评估光谱危害程度和防蓝光危害光谱优化设计。
2.3.2 蓝光危害相关标准
蓝光的光辐射安全性受到人们的强烈关注,相关国际组织也积极投身该类研究,并制定了相关的标准,以规范光源的设计与使用,保障人体安全[11]。国际非电离辐射保护委员会(ICNIRP)最早公布了每种有关危害的光辐射曝光极限值(EL),这些极限值是根据已报导的光辐射视觉效应相关损伤的极限值和对动物器官进行实验得出。针对光源和显示背光源中常见的LED光源,国际电工委员会最初将其归类为激光光源,决定将LED的光生物安全性标准包括在已有的激光标准IEC60825范围中。但LED发光角度虽然有定向性,但角度较大,发散特性明显,LED的伤害被过高估计。因此,在IEC60825标准修订的同时,1996年北美照明工程师学会 (IESNA)公布了《灯和灯系统光生物安全性的推荐实施条例:总的要求》(ANSI/IESNARP27.1),该条例颁布了一系列关于非激光光源(包括LED光源)的标准。2002年国际照明委员会(CIE)采用了该条例的主体,出版了CIE标准S009/E-2002(即《灯和灯系统的光生物安全性》),于是将包含LED光源在内的非激光光源标准推向全世界。2006年,国际电工委员会决定采用CIE的CIE S009/E:2002标准,同时也颁布了IEC 62471:2006 《灯和灯系统的光生物安全性》作为双重标识标准。IEC 62471标准还对危害程度进行了分级,包括无危害、低危害、中度危害和高度危害4类。对各类危害,IEC 62471标准分别给定了危害曝照极限值(EL),包括曝辐时间限值和曝辐值限值等。在该标准中,光源蓝光亮度越高、发光面积越小、辐曝时间越长,则危害越大。2006年,国内也采纳该标准,出版了国家标准即GB/T20145-2006《灯和灯系统的光生物安全性》。2014年,国际电工委员会又推出了IEC/TR 62778,它在IEC 62471基础上,完善了评价和测试方法等内容。
由于对蓝光非视觉损害相关的绝对损伤程度等课题仍在研究中,因此尚无专门针对非视觉危害的相关标准。
3 显示产品中蓝光危害影响因素
3.1 色温
色温是显示产品的常规光学参数,也代表了显示颜色的偏黄、偏蓝程度。色温越高,蓝光比例越高;色温越低,黄光比例越高。显然,色温越高,蓝光危害程度越大[3,19,23,30]。另外,如前所述,由于人类年龄越小,晶状体对蓝光透过率越高,因此其受蓝光伤害越大。如图6所示。
图6 不同色温光源对不同年龄人群的蓝光危害程度。(a)蓝光危害;(b)节律危害[30]。Fig.6 Degree of blue light hazard of different color temperature sources for different age groups. (a) Blue light factor; (b) Circadian factor[30].
如图6所示,色温对蓝光危害的影响程度较大。随色温升高,视觉损害和非视觉损害均成倍数增大。对于20岁青年人群,色温从2 000 K增加到6 500 K时,视觉损害提高了约10倍,非视觉损害也提高了超过5倍。当然,相同色温的不同产品,蓝光危害程度会因为其他因素影响而存在差异。常规显示产品的色温值为标准值,电视产品标准色温为10 000 K。其他显示产品标准色温为6 500 K。因过量调整会影响显示画面的色彩真实性,色温难以大幅度下调,只可在很小的范围内(±1 000 K)浮动。因此,如何进行色温管理以减小蓝光危害值得进一步研究。
3.2 光谱分布
蓝光危害程度有较强的波长依赖特性,因此,显示产品发光的光谱分布特点,如混色基色数、光谱主波长位置等,对蓝光危害也有较大影响。
3.2.1 光谱混色基色数
由色度学原理中同色异谱特性可知,同一颜色可通过无数种光谱分布叠加实现。因此,显示产品的白光可由二基色、三基色、甚至四基色来实现。二基色由蓝光和黄光组合(B+Y),三基色可由蓝光、绿光和红光组合(B+G+R)或者蓝光、黄光、红光组合(B+Y+R),四基色可由蓝光、绿光、黄光、红光来组合实现(B+G+Y+R)。不同基色的蓝光危害对比如图7所示,图中为基于每一种基色组合下、每一基色在不同波长选取时的Eb’(蓝光加权辐照度)值统计结果。
图7 不同基色光谱蓝光危害Eb’范围[3]Fig.7 Different primary color spectrum blue light damage Eb’ range[3]
图7结果显示,每一种基色组合,Eb’值可在较大的范围内变化,由此说明光谱分布设计对蓝光危害程度有较大影响;另外,对比不同基色组合的Eb’最小值,二基色组合最大,三基色、四基色组合相当,三基色略小。因此,通过合理配置基色,三色组合造成的蓝光危害程度最小。
3.2.2 光谱主波长位置
显然,增大蓝光波长可降低蓝光危害,但如前所述,光谱需满足一定色温标准。因此不能只简单考虑蓝光,还需考虑其它颜色波长的影响。不同色温下,不同三基色波长组合的蓝光危害指数结果如图8所示。
由图8可得,无论低色温还是高色温,为获得最小的蓝害指数,均应选择较长的蓝光波长和510 nm附近绿光波长和较长的红光波长。这是因为,根据色度学混色原理,为获得白光,当所选取的红光波长越长时,其自身成分比例需求就越大。因此红光波长越长,蓝光比例相应减少,故Eb’越小。另外,因为绿光光谱分布较宽,则绿光波段波长的蓝移有利于降低绿光光谱对红色成分的贡献,这进一步使白光光谱中所需红光光谱的比例增加,从而进一步降低Eb’。图中结果还表明,各基色波长组合搭配对蓝光危害指数有较大影响,如搭配不当,即使选用较长的蓝光波长,蓝光危害程度不降反升。另外,光谱分布同样会影响显示产品的色域等其他光学指标。因此,进行光谱分布设计时,需综合考虑。
图8 三色基白光各基色波长与Eb’的关系。(a)2 700 K白光;(b)5 700 K白光[3]。Fig.8 Relationship between the wavelength of each primary color of trichromatic white light and Eb’ at 2 700 K(a) and 5 700 K (b) white light[3]
3.3 显示光源类型
不同显示光源类型的差异,本质上也是光谱分布的差异。早期显示产品使用阴极射线管(CRT)方式。但目前显示产品中,主要有两类显示方案,一类是液晶显示,另一类是有机发光二极管显示(OLED)。液晶显示需要背光源,早期背光源使用冷阴极荧光灯管(CCFL),目前多使用无机发光二极管(LED)作为背光源。几种光源的蓝光危害差异如图9所示。
图9 4种显示光源在不同色温下蓝光危害程度对比。(a)视觉损害因子;(b)非视觉损害因子[31]。Fig.9 Comparison of the 4 kinds of display light sources at different color temperatures. (a) Visual factor; (b) Non-visual factor) [31].
对比两种主流方式,LED-LCD和OLED的蓝光危害如图9所示。OLED在视觉损害方面小于LED-LCD,但在非视觉损害方面,高色温区高于LED-LCD。这是由于OLED光谱中蓝光波长约455 nm,而LED-LCD光谱中蓝光波长约445 nm。OLED较LED-LCD蓝光波长更长,因此OLED中蓝光波长更远离视觉损害程度最大波长值440 nm,但更接近常用的非视觉损害程度最大波长值464 nm。另外,从图9可知,不同光源类型差异并不明显,尤其人们关注更多的LED-LCD,并无明显的蓝光危害程度增加。国际照明委员会最近也专门针对LED的安全性进行声明。该声明表示只要正确使用,LED蓝光危害程度与其他光源相当[32]。因此,不同显示光源类型的判断,需根据具体显示产品和具体光谱分布进行判断。
4 防蓝光显示技术
防蓝光显示技术的研究主要围绕减少蓝光比重进行。目前的防蓝光显示技术主要有以下几个方向。
4.1 增大蓝光芯片波长
常规LED-LCD显示背光源使用的蓝光LED波长为445 nm左右,而视觉相关蓝光危害程度最大处为440 nm。因此,增大蓝光LED芯片波长至455 nm甚至更长[33],是显示背光源的防蓝光优化方向之一。当然,此方法的局限性在于会对显示色域等其他光学参数造成影响。
4.2 光谱优化筛选
为综合平衡色域等其他显示参数和防蓝光危害设计,可使用包含色温、色域、蓝害指数等相关显示参数的大数据运算程序,进行白光光谱优化设计,提供不同需求下的最佳光谱方案[3,34]。此方法需根据蓝害指数和其他光学参数计算方法进行函数化,并编写迭代运算代码,以实现对大量不同波长的LED芯片和荧光粉进行排列组合运算,筛选出其最佳组合。
4.3 烛光OLED技术
烛光光谱近似标准光源A,其光谱强度随波长增大而增加,由于黄红光比例较大,蓝光占比最小,因此蓝光危害较小。烛光OLED技术是开发新型OLED材料,获得类烛光光谱[35-36]。但此方案在白光色温和显示色域方面需进行特别考虑。
4.4 蓝光反射膜层
基于薄膜光学原理,将不同折射率的SiO2和SiN膜层交替制作在显示面板上,通过控制两种膜层的厚度和层数,可实现对特定波长的反射,以禁止其透射出显示面板。利用此原理,京东方通过设计只反射短波长蓝光的膜层,实现减低蓝光危害。与增大蓝光波长一样,此方法仍需要配合背光源或者彩膜的调整,以匹配显示光学基准。
5 结论及展望
目前人们对蓝光危害的关注程度越来越高,对蓝光危害的机理、对人体的影响程度的研究也愈发深入和全面。本文围绕显示产品,全面阐述了蓝光对人体视觉和非视觉两种损害方式的损害对象、损害机理、评估方法和相关标准;并分析了显示产品中色温、光谱分布、显示光源类型造成的蓝光危害程度;最后介绍了目前防蓝光显示技术方案。目前防蓝光显示方案主要是通过增大蓝光波长、光谱优化设计、减少蓝光比重等方式来实现。尽管在减轻蓝光损害方面取得了一定进展,防蓝光显示技术仍有待进一步研究。一方面,目前蓝光危害标准主要基于照明光源设定,光源亮度越大、发光面积越小、辐曝时间越长,蓝光危害越大。显示产品虽发光面积较大、颜色切换速度快,但画面亮度高,对人眼照射时间长、距离近。因此显示产品在实际使用过程中蓝光危害的综合评估方法、辐曝极限值和测试方法等标准需进一步研究。另一方面,蓝光对人体节律的影响程度尚无公认的量化结论和标准,仍需进一步研究。办公电脑、手机等显示产品已占用人们的大部分时间,因此显示产品更加需要关注蓝光对节律的影响。另外,由于色彩正常显示的需要,不能大幅度减少蓝光比例来减轻蓝光危害,而少量调整蓝光则只能带来小幅度蓝光危害的降低。因此如何在确保正常显示光学指标的基础上实现大幅度降低蓝光危害,需进一步研究。