树木木质部生长动态及其调节机制研究进展
2019-12-22郭霞丽余碧云张邵康黎敬业王婕黄建国
郭霞丽, 余碧云, 张邵康, 黎敬业, 王婕, 黄建国*
树木木质部生长动态及其调节机制研究进展
郭霞丽1,2,3, 余碧云1,2,3, 张邵康1,2, 黎敬业1,2,3, 王婕1,2,3, 黄建国1,2*
(1. 中国科学院华南植物园退化生态系统植被恢复与管理重点实验室, 广东省应用植物学重点实验室, 广州 510650; 2. 中国科学院核心植物园植物生态学协同中心,广州 510650;3. 中国科学院大学, 北京 100049)
全球变化对树木木质部生长产生了深远影响,进而影响了森林生态系统的固碳功能以及全球生态系统能量和物质的循环过程。树木木质部生长动态主要包括形成层活动开始和结束的时间、生长季长度以及分裂速率等,其受到多种因素的共同调节,如植物激素、碳水化合物、氮素和气象因子等。通过在精细的时间尺度上对比研究树木木质部生长动态,揭示木质部形成的决定因子,可以加深对树木生长生理机制的理解,从而提高其对气候变化响应的预测精度。对近年来在木质部的形成动态及其调节机制方面取得的研究进展进行了综述,并对未来的研究方向进行了展望。
生长季长度;生长速率;植物激素;碳水化合物;氮素;气象因子
树木是森林生态系统的重要组成部分,可通过对大气中二氧化碳的吸收和固定,从而减缓全球变化的进程[1]。木质部不仅为树木生长提供机械支撑,还有传输水分和养分,抵御风雪等功能,同时作为重要的碳汇器官,具有巨大的经济和社会效益。当前气候变化背景下,高温和干旱事件频发, 导致木质部的生长急剧衰退,进而引发大面积森林死亡[2]。因此,深入探讨木质部生长动态及其调控机制可以帮助我们更好地预测森林生态系统对气候变化的响应以及适应。
木质部生长是一个复杂并具有生态弹性的过程。在寒带和温带地区,随着春季温度的上升,树干形成层打破休眠开始分裂活动,向外产生韧皮部,向内产生木质部。从形成层释放出来的细胞经过体积增大,细胞壁加厚,最终发育为成熟的木质部细胞[3–4]。大量研究表明,生长季内树干木质部的形成过程是一个“S”型曲线,即在生长季初期木质部生长较慢;随着持续升温,木质部进入快速生长期,之后逐渐减缓并进入冬季休眠期。木质部生长动态一般分为时间和数量两个既独立又相互联系的维度,包括形成层活动开始和结束的时间、生长季长度和木质部的生长速率以及最终的木质部总量等。木质部形成层活动开始和结束的时间是树木对环境适应性的表现,体现了对资源的充分利用及对不利环境的躲避[5]。研究表明,气候变暖已经引起了生长季的开始期提前,结束期延后,从而导致生长季延长[6–9]。这种改变预期将提高木质部生长量,从而使得森林生态系统的固碳作用进一步加强,对林分生长和森林生产力产生深远影响[10]。
研究木质部生长动态变化及调控机理对物种生存以及群落维持有重要意义,同时可以帮助我们预测未来的森林生产力和碳汇等,然而目前相关综述较为缺乏。木质部生长受到多种因子的共同调节,如植物激素、碳水化合物、氮素和气象因子等。通过系统地梳理以上因子与木质部生长之间的联系,可以加深我们对树木生理生态过程及生态系统过程和功能的了解。因此,本文将在前人综述的基础上,重点突出木质部的生长动态及其调控机理,并为后续工作进行展望,以期为全面理解树木生长的生理机制提供一些新思路。
1 木质部生长动态
有研究表明,木质部生长季长度和生长速率共同决定木质部生长量,即较长的生长季长度和较慢的生长速率或者较短的生长季长度和较快的生长速率均可产生相似的年木质部生长量[11–13]。因此,准确定量生长季长度与生长速率对木质部生长量的相对贡献,可以帮助我们深入理解木质部的生长动态,从而有效预测未来的森林碳汇变化。普遍认为,木质部生长开始时间越早,生长季越长,则会产生较宽的年轮[14]。香脂冷杉()的生长季长度对木质部生长量贡献率达76%,远远高于生长速率对木质部生长量的贡献率[15]。Rossi等[16]通过分析北半球大范围尺度的微树芯数据,认为生长季长度主要决定了木质部生长量,并且生长季延长13%, 对应的木质部细胞数增长了109%[16], 这证明生长季的延长会导致木质部生长量的不对称增加,从而促进森林生产力[16]。然而,通过监测欧洲地区的挪威云杉()、樟子松()和欧洲冷杉()的木质部生长动态和进一步定量分析,结果表明,生长速率对木质部生长量的贡献率为75%,而生长季长度的贡献率为25%[12,17]。同样,生长速率对青藏高原祁连圆柏()木质部的生长也起到决定性作用[18–19]。有研究表明,在青藏高原半干旱区,温暖而又干燥的气候条件导致的较长生长季不利于针叶树木质部形成,而温度升高诱导的干旱可能通过降低木质部生长速率来限制碳的固定[20]。这些结果表明生长季长度或者生长速率不能单独决定木质部生长,两者之间的权衡关系共同决定了树木生长对气候变化的响应[12]。
2 木质部发育调控机制
2.1 植物激素
激素在植物体内广泛分布,通过直接或间接地促进或减慢植物的代谢过程,进而调节其生长和发育过程。生长素是第一个被发现的植物激素,其产生、运输和代谢活动均对木质部生长起着重要的调节作用[21]。一般认为,在幼嫩的分生组织,如嫩芽中产生大量生长素。春季,生长素沿着树干向下极性运输,刺激树干的形成层开始分裂活动,形成木质部[22]。生长素促进细胞生长的作用体现在两方面:首先,生长素可使细胞壁疏松,增强其可塑性,从而促进了细胞的纵向伸长;其次,生长素诱导蛋白质等物质的合成,从而增加了细胞原生质体[23–24]。有研究表明,生长素含量在形成层区域最高,沿着增大期细胞、增厚期细胞和成熟期细胞区域依次降低[25],其浓度梯度维持着形成层和木质部细胞结构稳定性。另外,生长素对于木质部生长的调节作用随着季节变化而有所差异。在生长季早期,生长素水平和形成层细胞数呈现显著正相关[26],而在生长季晚期,即使生长素含量很高,形成层依然进入休眠期,说明休眠期可能不是由生长素单独控制[27]。生长素含量降低引发细胞壁较薄、管腔较大的早材向细胞壁较厚、管腔较小的晚材转化[28]。而Uggla等[29]通过连续监测生长素含量,认为晚材开始形成时,生长素含量并没有明显变化。因此,相比于生长素含量变化,生长素本身可能提供了一种信号作用,从而决定木质部的发育过程[27]。除了生长素,其他植物激素,如细胞分裂素、赤霉素、乙烯、脱落酸等也会共同调控形成层的分裂活动以及木质部形成。与生长素的分布不同,细胞分裂素含量在韧皮部最高[30],赤霉素含量在发育的木质部中最高[31]。同时,各种植物激素之间通过相互作用, 共同调控木质部细胞的生长。细胞分裂素和生长素具有协同作用,可以共同促进形成层细胞分裂和木质部细胞的发育[30,32]。在生长素的参与下,赤霉素调控纤维细胞的伸长过程[33]。
2.2 碳水化合物
木质部的生长过程需要消耗的大量能量主要由碳水化合物提供[34]。植物体内的碳水化合物分为结构性碳水化合物和非结构性碳水化合物。结构性碳水化合物用于细胞壁构成,如纤维素、半纤维素和木质素等。非结构性碳水化合物是叶片进行光合作用之后的产物,主要为淀粉和可溶性糖,即葡萄糖、果糖、麦芽糖和蔗糖等,是植物用于新陈代谢的重要能量物质[35]。Deslauriers等[36]首次研究了加拿大杨()和美洲黑杨()在生长季内木质部的产生和可利用性碳的关系,证明形成层内的非结构性碳含量和木质部的形成过程正相关,即当木质部生长速率最大时非结构性碳浓度较高,并且碳含量是限制木质部活细胞新陈代谢的首要因子[36]。糖分既可以为细胞的分裂活动提供能量,同时也可以作为生长调节物质,通过调控相关基因的表达,从而促进细胞有丝分裂和细胞增殖,对树木生长具有重要意义[37–39]。有研究表明,欧洲赤松()糖分含量的季节波动和形成层季节活动高度吻合[40]。而欧洲云杉()在糖分含量最高的时候,增厚期的细胞数和木质部生长量也达到最大值[41]。
通常情况下,叶片光合作用产生的碳水化合物一部分直接用于树木生长,一部分则会通过韧皮部向下运输,储存在木质部中,以应对极端气候下由于光合作用不足导致的树木碳饥饿[42]。通过深入了解木质部生长的碳源机制,可以帮助我们了解树木内在的碳分配机制并预测树木对极端天气的响应。有研究表明,木质部的生长和碳的累积具有高度同步性。在生长季早期,木质部生长和可溶性碳累积同步进行。在生长季后期,木质部生长逐步停止,可溶性碳含量达到最大值,为下一年的树木生长做好能量储备[43]。气候条件,如温度和光照可以通过直接影响光合作用,从而影响树木生长的能量供应,因此本研究从能量的角度上解释了气候条件对树木生长的滞后效应,即上一年的气候可以显著影响下一年的树木生长。在干旱地区,夏季高温导致木质部生长速率下降甚至停止生长,因此非结构性碳含量累积[44]。一旦有充足的水分,形成层可以通过存储的碳水化合物提供能量,进而重新开始分裂活动,形成一年内木质部生长的双峰曲线。因此, 木质部生长动态的灵活性很大程度上依赖于木质部中存储的非结构性碳含量。
2.3 氮素
作为氨基酸和其他有机物质构成的重要原料,氮素是植物生长必需的大量元素,对于植物的生长和发育具有重要作用。氮添加可以通过增加叶片中Rubisco和叶绿素的浓度促进光合作用,或者通过提高树木对存储碳水化合物的可利用性[45],从而为木质部形成提供关键能量。普遍认为氮素是森林生态系统主要的生长限制因子,然而,由于近年来人类活动的加剧,大气氮沉降大幅度增加,对森林生态系统造成了很大的影响。因此,深入研究氮素对木质部发育动态的影响,可用于评估当前氮沉降对树木生长和森林生态系统的影响,预测全球气候变化下森林生态系统的发展。目前全球已开展了大量模拟氮添加对木质部生长影响的研究,然而由于氮添加方式、氮添加速率以及实验年限等因素的不同,相关研究未取得共识。在寒带和温带森林中, 短期氮添加均未对香脂冷杉、黑云杉()、马尾松()、枫香()木质部形成动态产生显著影响[46–50]。但在长期的氮沉降环境中,木质部的形成是否受其影响仍需进一步研究。Yu等[51]证实, 相比于林下氮添加, 林冠氮添加能够显著促进麻栎()木质部生长,说明树木冠层截留的氮素可以被有效利用[52],之前传统的林下氮添加可能低估了氮沉降对树木生长的影响[53]。通过监测中国亚热带氮添加对优势树种木质部解剖结构的影响,发现林冠和林下施氮均显著促进木荷()的木质部管胞增大,而对锥栗()则无显著影响[54],说明即使是在氮饱和的亚热带森林生态系统,适量的氮添加仍然可以对木质部形成产生影响。
2.4 气象因子
大量研究表明,气象因子包括温度、降雨和光周期对于木质部形成具有重要的调节作用。普遍认为温度是调控树木形成层活动的启动因子[55]。一方面,形成层分裂和细胞增大涉及的一系列酶促反应对温度极其敏感;其次,温度可以通过影响非结构性碳的可利用性间接影响木质部生长。通过分析青藏高原不同海拔梯度上祁连圆柏树干木质部的生长物候期,结果表明木质部生长开始的时间与海拔引起的温度变化相关,即海拔每降低100 m,木质部开始生长的时间提前8.2 d,而木质部生长结束的时间与海拔引起的温度差异关系较弱[19]。通过大空间尺度范围内探索木质部发育动态的一般规律及其机理,发现木质部的起始生长受到冬、春季积温的共同影响,进一步揭示了温度对木质部形成的主导作用[56]。另外,在研究相对较少的亚热带地区,同样发现温度对于调节马尾松木质部增大期和增厚期细胞具有显著的促进作用[57]。一般来讲,对温带和寒带地区的树木,当春季温度达到低温阈值(4℃~5℃),木质部才开始生长。对藏东南色季拉山史密斯杉树()的研究表明,大气最低温是影响木质部生长的主要气候因素,而且限制木质部分化开始的最低温阈值为(0.7±0.4)℃[58],远远低于之前报道的温度阈值。
水分对于木质部的生长发挥着重要作用。形成层细胞的分裂活动和细胞增大是受膨压驱动的过程,需要充足的水分[59–60]。因此,在干旱地区,相比于温度,降雨是调控形成层活动开始的关键因子[13]。通过模型预测,发现在合适的温度下,连续12 d的累积降雨达(17.0±5.6) mm才能启动祁连圆柏的木质部生长[61]。对于热带常绿树种来说,水分条件则决定了形成层活动的持续时间[62]。通过对不同水分亏缺下木质部的发育动态进行监测,表明水分是调节分生组织形成层细胞分裂的首要因子[36],碳次之,这解释了全球气候变暖所诱导的干旱抑制树木生长及导致死亡率增加的生理机制。相比于温度和降雨,光周期可以为植物生长提供稳定的信号,进而调控木质部发育。通过分析北半球的树木木质部生长动态,认为其最大生长速率发生在夏至日左右。树木在环境适宜的情况下提前降低形成层分裂速率,可能是为了保证树木在入冬之前完成所有的木质化过程[63]。
3 总结和展望
树木木质部生长是重要的碳汇过程,通过深入了解其调节机制,可为预测森林生态系统碳汇变化及可持续森林经营管理提供理论依据。然而,当前在该领域方面仍存在一些问题,以期未来研究中能进一步关注。首先,树木生长同时受到多种因素的共同调节,并且各因素之间存在相互影响。例如低温会通过限制碳水化合物的可利用性,从而对树木生长产生不利影响[64]。较高的碳水化合物和生长季早期温度可通过促进生长素合成及运输,进而促进形成层分裂[65–66]。而生长季晚期短日照引发的形成层对生长素的不敏感性,导致形成层进入休眠[27]。这说明各个因子之间通过复杂的相互联系,共同调节木质部生长。因此,未来研究应该更加关注植物激素、碳水化合物、氮素和气象因子之间的相互作用,从而对树木生长的调节机制有更加全面的认识。另外,树木作为一个有机整体,树冠、树干和根部的生长相互耦合,协调发展,同时监测三者的动态生长过程,结合激素、碳水化合物及氮素含量的测定,通过定量分析和结构方程等模型手段,有利于在整树水平上深入理解树木受到以上因素调节的时空差异性,从而进一步探索树木在不同器官内的碳分配策略以及对全球变化的响应。最后,由于全球数据分布的不均匀性,相比于寒带及温带森林,热带及亚热带对于木质部生长的相关研究相对较少。因此,亟需在低纬度地区尽快开展相关工作,从而有利于在全球尺度上评估树木生长和森林生态系统对全球变化的响应和适应机制,为国家生态文明建设以及全球可持续发展服务。
[1] PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests [J]. Science, 2011, 333(6045): 988– 993. doi: 10.1126/science.1201609.
[2] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J]. For Ecol Manage, 2010, 259(4): 660–684. doi: 10.1016/j.foreco.2009.09.001.
[3] GRIČAR J, ČUFAR K, OVEN P, et al. Differentiation of terminal latewood tracheids in silver fir trees during autumn [J]. Ann Bot, 2005, 95(6): 959–965. doi: 10.1093/aob/mci112.
[4] ROSSI S, DESLAURIERS A, GRIÇAR J, et al. Critical temperatures for xylogenesis in conifers of cold climates [J]. Glob Ecol Biogeogr, 2008, 17(6): 696–707. doi: 10.1111/j.1466-8238.2008.00417.x.
[5] PARMESAN C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming [J]. Glob Change Biol, 2007, 13(9): 1860–1872. doi: 10.1111/j.1365-2486.2007.01404.x.
[6] DESLAURIERS A, MORIN H, BEGIN Y. Cellular phenology of annual ring formation ofin the Quebec boreal forest (Canada) [J]. Can J For Res, 2003, 33(2): 190–200. doi: 10.1139/x02-178.
[7] DESLAURIERS A, ROSSI S, ANFODILLO T, et al. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy [J]. Tree Physiol, 2008, 28(6): 863–871. doi: 10.1093/treephys/28.6.863.
[8] ZHAI L H, BERGERON Y, HUANG J G, et al. Variation in intra- annual wood formation, and foliage and shoot development of three major Canadian boreal tree species [J]. Amer J Bot, 2012, 99(5): 827– 837. doi: 10.3732/ajb.1100235.
[9] HUANG J G, DESLAURIERS A, ROSSI S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity [J]. New Phytol, 2014, 203(3): 831–841. doi: 10.1111/nph. 12859.
[10] ROSSI S, BORDELEAU A, MORIN H, et al. The effects of N-enriched rain and warmer soil on the ectomycorrhizae of black spruce remain inconclusive in the short term [J]. Ann For Sci, 2013, 70(8): 825–834. doi: 10.1007/s13595-013-0329-1.
[11] DESLAURIERS A, MORIN H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables [J]. Trees, 2005, 19(4): 402–408. doi: 10.1007/s00468-004-0398-8.
[12] CUNY H E, RATHGEBER C B K, LEBOURGEOIS F, et al. Life strategies in intra-annual dynamics of wood formation: Example of three conifer species in a temperate forest in north-east France [J]. Tree Physiol, 2012, 32(5): 612–625. doi: 10.1093/treephys/tps039.
[13] REN P, ROSSI S, GRICAR J, et al. Is precipitation a trigger for the onset of xylogenesis inon the north-eastern Tibetan Plateau? [J]. Ann Bot, 2015, 115(4): 629–639. doi: 10.1093/ aob/mcu259.
[14] HE M H, YANG B, SHISHOV V, et al. Relationships between wood formation and Cambium phenology on the Tibetan Plateau during 1960–2014 [J]. Forests, 2018, 9(2): 86. doi: 10.3390/f9020086.
[15] DUCHESNE L, HOULE D, D’ORANGEVILLE L. Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada [J]. Agric For Meteor, 2012, 162–163: 108– 114. doi: 10.1016/j.agrformet.2012.04.016.
[16] ROSSI S, GIRARD, M J, MORIN H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production [J]. Glob Change Biol, 2014, 20(7): 2261–2271. doi: 10.1111/gcb. 12470.
[17] RATHGEBER C B K, ROSSI S, BONTEMPS J D. Cambial activity related to tree size in a mature silver-fir plantation [J]. Ann Bot, 2011, 108(3): 429–438. doi: 10.1093/aob/mcr168.
[18] ZHANG J Z, GOU X H, MANZANEDO R D, et al. Cambial phenology and xylogenesis ofover a climatic gradient is influenced by both temperature and drought [J]. Agric For Meteor, 2018, 260–261: 165–175. doi: 10.1016/j.agrformet.2018.06.011.
[19] ZHANG J Z, GOU X H, PEDERSON N, et al. Cambial phenology inalong different altitudinal gradients in a cold and arid region [J]. Tree Physiol, 2018, 38(6): 840–852. doi: 10.1093/tree phys/tpx160.
[20] REN P, ZIACO E, ROSSI S, et al. Growth rate rather than growing season length determines wood biomass in dry environments [J]. Agric For Meteor, 2019, 271: 46–53. doi: 10.1016/j.agrformet.2019.02.031.
[21] WEIJERS D, NEMHAUSER J, YANG Z B. Auxin: Small molecule, big impact [J]. J Exp Bot, 2018, 69(2): 133–136. doi: 10.1093/jxb/erx463.
[22] ALONI R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation [J]. Planta, 2013, 238(5): 819– 830. doi: 10.1007/s00425-013-1927-8.
[23] COSGROVE D J. Loosening of plant cell walls by expansins [J]. Nature, 2000, 407(6802): 321–326. doi: 10.1038/35030000.
[24] PERROT-RECHENMANN C. Cellular responses to auxin: Division versus expansion [J]. Cold Spring Harb Perspect Biol, 2010, 2(5): a001446. doi: 10.1101/cshperspect.a001446.
[25] BHALERAO R P, FISCHER U. Auxin gradients across wood- instructive or incidental? [J]. Physiol Plant, 2014, 151(1): 43–51. doi: 10.1111/ppl.12134.
[26] FAJSTAVR M, PASCHOVÁ Z, GIAGLI K, et al. Auxin (IAA) and soluble carbohydrate seasonal dynamics monitored during xylogenesis and phloemogenesis in Scots pine [J]. iForest-Biogeosci Forestry, 2018, 11: 553–562. doi: 10.3832/ifor2734-011.
[27] KIJIDANI Y, NAGAI T, SUWASHITA T, et al. Seasonal variations of tracheid formation and amount of auxin (IAA) and gibberellin A4 (GA4) in cambial-region tissues of mature sugi () cultivar grown in a Nelder plot with different tree densities [J]. J Wood Sci, 2017, 63(4): 315–321. doi: 10.1007/s10086-017-1626-3.
[28] Larson P R. Wood formation and the concept of wood quality [J]. Yale Univ Sch For Bull, 1969, 74: 1–54.
[29] UGGLA C, MAGEL E, MORITZ T, et al. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine [J]. Plant Physiol, 2001, 125(4): 2029–2039. doi: 10.1104/pp.125. 4.2029.
[30] IMMANEN J, NIEMINEN K, SMOLANDER O P, et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity [J]. Curr Biol, 2016, 26(15): 1990–1997. doi: 10.1016/j.cub.2016.05.053.
[31] ISRAELSSON M, SUNDBERG B, MORITZ T. Tissue-specific locali- zation of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen [J]. Plant J, 2005, 44 (3): 494–504. doi: 10.1111/j.1365-313X.2005.02547.x.
[32] NIEMINEN K, IMMANEN J, LAXELL M, et al. Cytokinin signaling regulates cambial development in poplar [J]. Proc Natl Acad Sci USA, 2008, 105(50): 20032–20037. doi: 10.1073/pnas.0805617106.
[33] ALONI R. Ecophysiological implications of vascular differentiation and plant evolution [J]. Trees, 2015, 29(1): 1–16. doi: 10.1007/s00468- 014-1070-6.
[34] AMTHOR J S. Efficiency of lignin biosynthesis: A quantitative analysis [J]. Ann Bot, 2003, 91(6): 673–695. doi: 10.1093/aob/mcg073.
[35] RICHARDSON A D, CARBONE M S, KEENAN T F, et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees [J]. New Phytol, 2013, 197(3): 850–861. doi: 10.1111/nph. 12042.
[36] DESLAURIERS A, HUANG J G, BALDUCCI L, et al. The contri- bution of carbon and water in modulating wood formation in black spruce saplings [J]. Plant Physiol, 2016, 170(4): 2072–2084. doi: 10. 1104/pp.15.01525.
[37] WANG L, RUAN Y L. Regulation of cell division and expansion by sugar and auxin signaling [J]. Front Plant Sci, 2013, 4: 163. doi: 10. 3389/fpls.2013.00163.
[38] HARTIG K, BECK E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle [J]. Plant Biol, 2006, 8(3): 389–396. doi: 10. 1055/s-2006-923797.
[39] ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants: Conserved and novel mechanisms [J]. Annu Rev Plant Biol, 2006, 57: 675–709. doi: 10.1146/annurev.arplant.57.032905. 105441.
[40] FALCIONI R, MORIWAKI T, DE OLIVEIRA D M, et al. Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers [J]. Front Plant Sci, 2018, 9: 1391. doi: 10.3389/fpls.2018.01391.
[41] SIMARD S, GIOVANNELLI A, TREYDTE K, et al. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands [J]. Tree Physiol, 2013, 33(9): 913–923. doi: 10.1093/treephys/tpt075.
[42] DIETZE M C, SALA A, CARBONE M S, et al. Nonstructural carbon in woody plants [J]. Annu Rev Plant Biol, 2014, 65: 667–687. doi: 10. 1146/annurev-arplant-050213-040054.
[43] BARBAROUX C, BRÉDA N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees [J]. Tree Physiol, 2002, 22 (17): 1201–1210. doi: 10.1093/treephys/22.17.1201.
[44] PÉREZ-DE-LIS G, OLANO J M, ROZAS V, et al. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks [J]. Funct Ecol, 2017, 31: 592–603. doi: 10. 1111/1365-2435.12789.
[45] KALLIOKOSKI T, MAKINEN H, JYSKE T, et al. Effects of nutrient optimization on intra-annual wood formation in Norway spruce [J]. Tree Physiol, 2013, 33(11): 1145–1155. doi: 10.1093/treephys/tpt078.
[46] LUPI C, MORIN H, DESLAURIERS A, et al. Increasing nitrogen availability and soil temperature: Effects on xylem phenology and anatomy of mature black spruce [J]. Can J For Res, 2012, 42(7): 1277– 1288. doi: 10.1139/x2012-055.
[47] D’ORANGEVILLE L, CÔTÉ B, HOULE D, et al. A three-year increase in soil temperature and atmospheric N deposition has minor effects on the xylogenesis of mature balsam fir [J]. Trees, 2013, 27(6): 1525–1536. doi: 10.1007/s00468-013-0899-4.
[48] DAO M C E, ROSSI S, WALSH D, et al. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce [J]. Front Plant Sci, 2015, 6: 877. doi: 10.3389/fpls.2015.00877.
[49] ZHANG S K, HUANG J G, ROSSI S, et al. Intra-annual dynamics of xylem growth insubmitted to an experimental nitrogen addition in central China [J]. Tree Physiol, 2017, 37(11): 1546–1553. doi: 10.1093/treephys/tpx079.
[50] ZHANG S K, ROSSI S, HUANG J G, et al. Intra-annual dynamics of xylem formation insubjected to canopy and understory N addition [J]. Front Plant Sci, 2018, 9: 79. doi: 10.3389/ fpls.2018.00079.
[51] YU B, HUANG J G, MA Q, et al. Comparison of the effects of canopy and understory nitrogen addition on xylem growth of two dominant species in a warm temperate forest, China [J]. Dendrochronologia, 2019, 56: 125604. doi: 10.1016/j.dendro.2019.125604.
[52] DAIL D B, HOLLINGER D Y, DAVIDSON E A, et al. Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA [J]. Oecologia, 2009, 160(3): 589–599. doi: 10.1007/s00442-009-1325-x.
[53] ZHANG W, SHEN W J, ZHU S D, et al. CAN canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem? [J]. Sci Rep, 2015, 5: 11245. doi: 10.1038/srep 11245.
[54] JIANG X Y, LIU N, LU X K, et al. Canopy and understory nitrogen addition increase the xylem tracheid size of dominant broadleaf species in a subtropical forest of China [J]. Sci Total Environ, 2018, 642: 733– 741. doi: 10.1016/j.scitotenv.2018.06.133.
[55] ROSSI S, ANFODILLO T, ČUFAR K, et al. Pattern of xylem phenol- logy in conifers of cold ecosystems at the Northern Hemisphere [J]. Glob Change Biol, 2016, 22(11): 3804–3813. doi: 10.1111/gcb.13317.
[56] DELPIERRE N, LIREUX S, HARTIG F, et al. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers [J]. Glob Change Biol, 2019, 25: 1089–1105. doi: 10.1111/gcb.14539.
[57] HUANG J G, GUO X L, ROSSI S, et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season [J]. Tree Physiol, 2018, 38(8): 1225–1236. doi: 10.1111/nph. 12859.
[58] LI X X, LIANG E Y, GRICAR J, et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau [J]. Sci Bull, 2017, 62(11): 804–812. doi: 10.1016/j.scib.2017. 04.025.
[59] ZWEIFEL R, ZIMMERMANN L, ZEUGIN F, et al. Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism [J]. J Exp Bot, 2016, 57(6): 1445–1459. doi: 10.1093/jxb/ erj125.
[60] VIEIRA J, CAMPELO F, ROSSI S, et al. Adjustment capacity of maritime pine cambial activity in drought-prone environments [J]. PLoS One, 2015, 10(5): e0126223. doi: 10.1371/journal.pone.0126223.
[61] REN P, ROSSI S, CAMARERO J J, et al. Critical temperature and precipitation thresholds for the onset of xylogenesis ofin a semi-arid area of the north-eastern Tibetan Plateau [J]. Ann Bot, 2017, 121: 617–624. doi:10.1093/aob/mcx188.
[62] TOTTI de L N O, da SILVA M R, NOGUEIRA A, et al. Duration of cambial activity is determined by water availability while cambial stimulus is day-length dependent in a Neotropical evergreen species [J]. Environ Exp Bot, 2017, 141: 50–59. doi: 10.1016/j.envexpbot.2017. 07.001.
[63] ROSSI S, DESLAURIERS A, ANFODILLO T, et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length [J]. New Phytol, 2006, 170(2): 301–310. doi: 10.1111/j. 1469-8137.2006.01660.x.
[64] KORNER C. A re-assessment of high elevation treeline positions and their explanation [J]. Oecologia, 1998, 115: 445–459.
[65] LILLEY J L S, GEE C W, SAIRANEN I, et al. An endogenous carbon- sensing pathway triggers increased auxin flux and hypocotyl elongation[J]. Plant Physiol, 2012, 160(4): 2261–2270. doi: 10.1104/pp.112.205575.
[66] SCHRADER J, BABA K, MAY S T, et al. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals [J]. Proc Natl Acad Sci USA, 2003, 100(17): 10096–10101. doi: 10.1073/pnas.1633693100.
Research Progresses on Xylem Formation Dynamics and Its Regulation Mechanism
GUO Xia-li1,2,3, YU Bi-yun1,2,3, ZHANG Shao-kang1,2, LI Jing-ye1,2,3, WANG Jie1,2,3, HUANG Jian-guo1,2*
(1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences,Guangzhou 510650, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)
Global changes impose a profound impact on the xylem formation, which in turn affects the carbon sequestration of forest ecosystems and fundamental services of global ecosystems. The xylem formation dynamic of tree is mainly characterized by the timing of the onset and the end of cambial activity, the length of the growing season, and the growth rate, etc., which are jointly regulated by various factors, such as phytohormone, carbohydrate, nitrogen and meteorological factors. By investigating the formation dynamics of xylem over a fine time scale, the determinants of xylem formation could be revealed, the understanding of physiological mechanism of tree growth would be deepen, and the prediction accuracy of the tree growth response to climate changes would further improve. The recent research progresses in the xylem formation dynamic and its regulation mechanism were reviewed, and the prospects for the future research were provided.
Length of growing season; Growth rate; Phytohormone; Carbohydrate; Nitrogen; Meteorological factor
10.11926/jtsb.4101
2019–05–29
2019–07–15
国家自然科学基金项目(41861124001, 31570584, 41661144007);广东自然科学基金项目(2016A030313152)资助
This work was supported by the National Natural Science Foundation of China (Grant No. 41861124001, 31570584, 41661144007), and the Natural Science Foundation in Guangdong (Grant No. 2016A030313152).
郭霞丽,主要从事树木生理学和森林生态学研究。E-mail: guoxl@scbg.ac.cn
E-mail: huangjg@scbg.ac.cn