APP下载

边缘计算是工业智能化的最佳“搭档”

2019-11-28

中国科技财富 2019年10期
关键词:集中式施耐德数据安全

文/本刊记者 陈 杰

物联网时代的到来,将联接从人与人之间进一步扩展到了人与物、物与物之间,数字化和智能化的浪潮开始席卷制造、电力、交通、医疗、农业、公共事业等各行各业。据IDC预测,全球数据总量到2025年将从2018年的33ZB增长到175ZB。

随着数据的指数级激增,企业在以云计算为代表的“集中式统一供水模式”存在很多问题:首先,每家每户用水量的增加使得水厂有些不堪重负;其次,水从水厂流到水龙头需要一定的延迟时间;最后,一旦供水厂出现问题,就会影响到整个供水网络的运作……于是,人们开始思考,能否在靠近水龙头的地方安装一个“应急水箱”来应对这些挑战呢?边缘计算这种分布式计算模式由此兴起。

所谓边缘计算,是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。

进入2019年后,边缘计算的热度持续升温,各行各业都在积极推进边缘计算落地,以期成为这条新赛道上的“领跑者”。但在施耐德电气为代表看来,工业领域或许将为边缘计算的落地提供最优的“土壤”,很多典型的工业场景对边缘计算存在着天然的需求。

联网设备规模的迅速扩大使得工厂产生的数据量正以极高的速度发生“膨胀”。

将数据的珍贵程度比作原油毫不过分,然而原油只有经过采集、运输、加工、提炼,才能真正得以使用。工业现场的很多数据“保鲜期”很短,一旦处理延误,就会迅速“变质”,数据价值呈断崖式下跌。

边缘计算的出现恰逢其时。它为设备提供了“贴身”计算服务,预测性维护等应用能够根据实时数据做出最佳决策,让数据的价值得以最大程度的释放。

除了时延,工业领域对数据安全的要求也格外严格。边缘计算将数据从集中式管理演变成分布式管理,提高了数据的安全性。

来自IDC的数据显示,到2020年将有超过500亿的终端与设备联网,2025年超过75%的数据需要在边缘侧分析、处理与储存。施耐德电气数据中心研发中心总监林密表示,低时延、实时交互、数据安全……这些优势已经成了边缘计算的代名词。然而,即使是看似全能的边缘计算,在工业领域的实际落地过程中还是会遭遇不小的挑战。

首当其冲的是边缘计算的多站点管理问题。边缘是一个相对的概念,处于物理实体和工业连接之间。边缘计算在行业落地面临的首要挑战并不是技术本身,而是厘清技术究竟能给行业的特定应用场景带来什么样的提质降本增效的商业价值。只有获得客户的价值认可,才有机会去迭代和推广边缘计算的应用。

行业专家认为,边缘计算还处于产业探索期,需要从点切入,也就是客户的痛点或者价值场景切入,而生态是产业发展的关键。正是因为整个产业链的协作,边缘计算的玩家也不能再像过去那样只专注于自身专精的领域,而是积极拥抱生态。

猜你喜欢

集中式施耐德数据安全
部署推进2020年电信和互联网 行业网络数据安全管理工作
建立激励相容机制保护数据安全
数据安全政策与相关标准分享
施耐德电气推出EcoStruxure架构与平台
硬式内镜器械清洗消毒集中式与分散式的管理效果比较
国有企业的集中式财务管理模式分析
集中互动式多媒体术前宣教在门诊手术患者中的应用
向施耐德学习“战略力” 等
2009施耐德电气智慧家居高端研讨会
APC审时度势迎复苏