地质灾害易发区农村居民点布局优化研究:以浙江洞头为例
2019-11-25张英杰雷国平
张英杰,雷国平①
(1.东北大学文法学院,辽宁 沈阳 110819;2.东北大学土地管理研究所,辽宁 沈阳 110819)
浙江洞头属于地质灾害高发地区,近年来随着经济快速发展,当地围垦造地、劈山建路、切坡建房和开矿采石等活动大量增加,对生态环境造成一定程度的破坏,开挖坡脚、削坡、坡后堆载、爆破振动等行为极易引发崩塌、滑坡等地质灾害。截至2015年底,洞头共发生历史地质灾害81次,其中泥石流3次,约占地质灾害总数的3.7%;崩塌23次,约占28.4%;滑坡55次,约占67.9%。地质灾害频繁发生,给洞头人民带来了巨大的财产损失和生命安全威胁。
在我国农村地区,早期居民点多自发无序建设,未考虑地质环境因素,地质灾害隐患是制约农村经济发展和生命财产安全的重要因素[1-3]。目前,国内外学者关于地质灾害易发性区划和农村居民点布局优化的研究颇多,主要包括运用GIS空间分析[4-7]、Logistic回归模型[8-9]和模糊聚类分析[10]等方法选取影响因子并划分地质灾害易发性等级以及运用网格分析法[11]、加权集覆盖模型[12]、景观格局指数分析方法[13]和最小累积阻力模型[14]等方法分析农村居民点空间布局现状及存在问题,并提出优化方向[15]。但将两者结合起来,以地质灾害易发性为切入视角,充分考虑地质灾害的危害性,对地质灾害易发区农村居民点布局优化的研究较少[16-19]。
鉴于此,以浙江洞头为例,对地质灾害易发性程度进行区划分析,明确研究区地质灾害易发和不易发区域,在此基础上,分析农村居民点的空间分布现状并提出相应的优化方向,有效预防研究区地质灾害,尽可能降低地质灾害损失,并为其他地质灾害易发区农村居民点布局优化提供参考借鉴。
1 材料与方法
1.1 研究区概况
洞头地处浙江省东南部沿海,位于27°41′~28°01′ N,120°59′~121°15′ E之间,与温州市隔海相望。洞头是我国著名的海岛县,由100多个岛屿组成,总面积为892 km2,其中海域面积较大,陆地面积仅为104.5 km2(图1)。研究区辖4个街道、1个镇和1个乡,包括84个行政村和2个居民区,总人口约为14万。研究区属于典型亚热带海洋型气候区,降水丰富,年均降水量为1 400 mm,最高年降水量可达2 000 mm以上,由强降水引发的滑坡和泥石流是洞头县主要地质灾害类型。研究区境内主要有丘陵地貌以及洪积平原和海积平原堆积地貌等类型。其中侵蚀丘陵地貌分布广泛,约占全县陆地面积的91%。丘陵山坡地形以凸型坡和直线型坡为主,容易出现崩塌滑落等现象;平原地区土质疏松,极易出现塌陷等现象。研究区陆地面积较小,可利用土地资源十分紧张,村庄多依山而建,特殊的自然地理环境和不断增加的人类工程活动成为洞头农村居民点处于地质灾害威胁下的重要原因。
国务院于2015年7月批准洞头县撤县立区,将原属于温州市行政管辖范围内的灵昆街道划归洞头。该研究基期为2015年,未将灵昆街道归入研究范围。
图1 研究区示意Fig.1 Sketch map of study area
1.2 数据来源
研究数据包括:洞头30 m空间分辨率的ASTER GDEM数字高程数据来源于中国科学院地理空间数据云网站(http:∥www.gscloud.cn)、《洞头年鉴》(2000—2015年)、《温州市洞头县城市总体规划(2005—2020年)》、《洞头县土地利用总体规划(2006—2020年)》、《浙江省洞头县1∶1万乡镇(街道)地质灾害分布与易发区图图册》(2014年)、《浙江省洞头县地质灾害防治规划(2008—2015年)》、《浙江省洞头县地质灾害隐患排查总结报告》(2014年)。采用ArcGIS 10.5软件对各类数据进行矢量化处理,建立各项专题图件,并统一各专题图件的空间投影坐标系统。
1.3 研究方法
1.3.1地质灾害影响因子数据集的建立
地质灾害的发生受到多种因素共同作用影响,最主要因素就是自然因素和人为因素。洞头县地质灾害类型以滑坡、崩塌和泥石流为主,影响地质灾害发生的因子多且复杂。在借鉴前人研究成果[20-24]基础上,通过对洞头历史地质灾害点进行实地调研分析,确定森林覆盖率(X1)、平均高程(X2)、地质岩组(X3)、平均坡度(X4)、年平均降水量(X5)、现状地质灾害点密度(X6)、人口密度(X7)和公路密度(X8)8个影响因子。
评价单元划分方法参照文献[25],充分考虑研究区整体情况,按行政区划将研究区划分为北岙街道、东屏街道、霓屿街道、元觉街道、大门镇和鹿西乡6个评价单元。其中北岙街道发生地质灾害24次,占历史地质灾害总次数的29.6%;东屏街道发生地质灾害12次,占总次数的14.8%;霓屿街道发生地质灾害17次,占总次数的21.0%;元觉街道发生地质灾害4次,占总次数的5%;大门镇发生地质灾害21次,占总次数的25.9%;鹿西乡发生地质灾害3次,占总次数的3.7%,6个评价单元的选取均具有代表性。
各评价单元地质灾害影响因子情况见表1。
表1 研究区各评价单元地质灾害影响因子Table 1 The influential factors of geological hazards in the study area
NT为松散粘性土类岩组;Qg为坚硬块状酸性侵入岩岩组;Hi为块状坚硬酸性熔结凝灰岩岩组;Ht为较坚硬-坚硬酸性晶玻屑凝灰岩、熔结凝灰岩夹凝灰质砂岩和粉砂岩岩组。
1.3.2地质灾害影响因子的评价
采用灰色关联分析方法[26]对地质灾害影响因子进行测度,该方法能够相对客观地测度指标权重,能够在较大程度上降低人为因素对测度结果造成的偏差[27]。
(1)地质灾害影响因子赋值
因有些影响因子不是量化指标,不能直接用于计算,因此需对各影响因子统一量化赋值,提高灰色关联分析的准确性。参照DZ/T 0286—2015《地质灾害危险性评估规范》和《关于进一步加强乡(镇)地质灾害分布与易发区图编制与评审工作的通知》(浙土资发〔2004〕57号)中相关数据指标,结合洞头现状及历史地质灾害点实地调研结果,形成地质灾害影响因子赋值标准(表2)。
表2 研究区地质灾害影响因子等级及赋值标准Table 2 Grading and valuation of influential factors for geological hazards assessment in the study area
NT为松散粘性土类岩组;ST为松散砂类土岩组;Hi为块状坚硬酸性熔结凝灰岩岩组;Ht为较坚硬-坚硬酸性晶玻屑凝灰岩、熔结凝灰岩夹凝灰质砂岩和粉砂岩岩组;Qg为坚硬块状酸性侵入岩岩组。
(2)建立地质灾害影响因子的关联数列
将选取的8个地质灾害影响因子进行关联,建立关联数列Xi={X1,X2,X3,X4,X5,X6,X7,X8}。
(3)数据初值化
由于各影响因子在含义、内容、取值标准等方面都存在差异,因此在分析前需对其进行无量纲化处理。采用初值化处理方法对数据进行归一化,计算公式为
(1)
式(1)中,Xi′(k)为数列Xi在k处的平均值,其中i=1,2,…,8。
(4)计算绝对差数列
通过比较数列Xj和参考数列Xi得到绝对差数列Δij,其计算公式为
Δij(k)=|Xi′(k)-Xj′(k)|。
(2)
式(2)中,Xi′(k)和Xj′(k)分别为数列Xi和Xj在k处的平均值,其中i=1,2,…,8;j=2,3,…,8。
(5)计算关联系数
分别计算各个时刻比较数列与参考数列的关联程度值,区分数列间的关联强度,得到灰色关联系数值ξij(k),其计算公式为
(3)
式(3)中,Δmin和Δmax分别为绝对差数列的最小值和最大值;ρ为分辨系数,取值范围为[0,1],通常情况下取0.5。
(6)计算关联度
因得到的关联系数较多,信息过于分散,不便于比较,采用灰色关联度方法计算得到比较数列与参考数列之间的关联度rij,其计算公式为
(4)
按照上述步骤进行重复计算,依次改变母序列,求出所有两两数列的关联度值,得到关联矩阵R。
(7)计算权重
通过关联矩阵R可得到各影响因子权重Wi,其计算公式为
(5)
经计算,X1、X2、X3、X4、X5、X6、X7和X8的权重分别为0.109 537、0.127 135、0.131 038、0.135 141、0.136 328、0.121 872、0.116 761和0.122 188。
2 结果与分析
2.1 洞头县地质灾害易发性分区
由研究区各地质灾害影响因子权重,采用ArcGIS 10.5软件空间分析功能进行加权叠加分析,测度洞头地质灾害易发程度。借鉴其他地质灾害区划研究成果[19-20]和《关于进一步加强乡(镇)地质灾害分布与易发区图编制与评审工作的通知》中地质灾害易发区划分标准,结合研究区实际情况,采用等间距法,将研究区地质灾害易发区划分为不易发区、低易发区、中易发区和高易发区4个等级[28-29](图2)。
根据研究区81处历史地质灾害点对地质灾害易发性分区结果进行验证。地质灾害高易发区和中易发区面积为44.365 km2,占研究区陆地总面积的42.46%,包含历史灾害点74处,占比为91.36%;不易发区和低易发区面积为60.135 km2,占研究区陆地总面积的57.54%,包含历史灾害点7处,占比为8.64%(表3),这表明研究区地质灾害易发程度区划结果与实际情况基本相符。
图2 研究区地质灾害易发性区划Fig.2 The susceptibility map of geological hazards in the study area
2.2 洞头县各行政村空间分布现状
采用ArcGIS 10.5软件叠加分析和空间分析功能,对研究区大门镇、鹿西乡、霓屿街道、元觉街道、北岙街道和东屏街道的居民区和行政村进行统计(图3),发现潭头村、桐岙村、正岙村、大北岙村和松柏园村等27个行政村和居民区的地质灾害中、高易发区面积占各居民点面积的比例超过70%;豆岩村、西浪村、潭头村、中仑村和洞头村等45个行政村和居民区的中、高易发区占比超过50%。
表3 研究区地质灾害易发程度区划信息Table 3 The zoning of geological hazards in the study area
图3 研究区各行政村地质灾害易发性占比Fig.3 The ratio of geological hazards susceptibility of administrative villages in the study area
研究区地质灾害中、高易发区主要分布在海拔较低的低丘陵地带,地形以凸型坡和直线型坡为主,地质岩组较为复杂,多为侵入岩、凝灰岩、砂类土和粘性土类岩组混合构成,地质构造不稳定,容易产生断裂塌陷等现象。研究区人口密度大,道路密集,人类工程活动较为频繁,对地质环境条件的改造较为强烈,尤其是道路周边地带,已成为崩塌、滑坡和泥石流等灾害发生的高频区。北岙街道和东屏街道是研究区主城区,经济发达,人口密集,森林覆盖率低,其涵养水源和防止水土流失的功能较差,因此这些地区地质灾害中、高易发区面积占比较高。位于霓屿街道西南部的正岙村、下朗村和长客垅村以及东屏街道南部的大岙村、大北岙村、松柏园村和外埕头村受降水量影响较大,容易受强降水影响而引发地质灾害。受地质灾害隐患影响较大的主要有大北岙村、豆岩村和活水潭村等地区,这些区域内都曾发生过地质灾害,且再次发生地质灾害的隐患较大。
2.3 研究区农村居民点布局优化
研究区居民点不同地质灾害易发程度分布状况见图4。由图4可知,不易发区居民点数占总居民点数的2.68%,低易发区居民点占比为22.78%,中易发区居民点占比为64.46%,高易发区居民点占比为10.08%。基于研究区各行政村地质灾害易发性程度区划信息和居民点分布状况,将研究区各行政村居民点划分为对外搬迁型、限制扩展型、内部拓展型和集聚发展型4种优化类型(表4)。根据各行政村实际情况,设定不同优化方向,以期为研究区降低地质灾害风险,制定防灾减灾规划提供科学依据。
图4 研究区居民点地质灾害易发程度区划Fig.4 Zoning for the rural settlements of geological disaster-prone areas in the study area
3 讨论
为积极响应国家关于加强村庄规划,引导并促进乡村振兴的战略方针,以自然资源部发布的《自然资源部办公厅关于加强村庄规划促进乡村振兴的通知》(自然资办发〔2019〕35号)为指导文件,参考《资源环境承载能力和国土空间开发适宜性评价技术指南(试行)》中关于地质灾害单项评价的研究方法,以地质灾害易发性为研究视角,对洞头农村居民点布局优化进行研究,统筹农村居民点布局建设、村庄安全和防灾减灾等工作,划定地质灾害影响范围,并提出农村居民点布局优化方向和防灾减灾的应对措施,对于促进洞头农村发展,实现乡村振兴具有重要的实践意义。
然而,笔者研究所讨论的农村居民点优化布局是基于地质灾害威胁下的视角提出的,研究结果具有一定区域特殊性。此外,在进行地质灾害影响因子评价时,因我国村级社会经济统计数据较少且难以获取,而现有数据不足以测度研究区社会经济因素与地质灾害发生的相关性,所以在构建评价指标体系时未能充分考虑社会经济因素的影响,评价指标体系的构建还有待进一步完善。因此,在后续研究中需进一步加强对社会经济因素的统计和测算,构建更加科学完善的评价指标体系。
表4 研究区农村居民点布局优化Table 4 The optimization of spatial distribution of rural settlements in the study area
N1和N2分别指中易发区和高易发区面积占农村居民点总面积比例;M1和M2分别指中易发区和高易发区面积占行政村总面积比例。
4 结论
以位于地质灾害多发区的浙江洞头为研究对象,采用灰色关联分析模型和GIS空间分析方法,选取影响地质灾害发生的影响因子,测度洞头地质灾害易发性程度,并将洞头划分为地质灾害不易发区、低易发区、中易发区和高易发区4个等级。结果表明:
(1)洞头地质灾害中、高易发区面积占研究区总面积比例较高,达42.46%,主要分布在东屏街道、北岙街道、霓屿街道西南部和东北部、元觉街道南部以及大门镇南部地区,地质灾害风险广泛威胁着洞头农村居民点。
(2)根据地质灾害易发性分区结果和农村居民点空间分布现状,发现洞头农村居民点布局较不合理,农村居民点布局建设并未充分考虑地质环境安全问题,居民点广泛集中在地质灾害风险较高的区域。其中,居民点位于地质灾害中、高易发区面积占各居民点总面积比例超过50%的有豆岩村、西浪村和潭头村等45个行政村和居民区,占比超过70%的有潭头村、桐岙村和正岙村等27个行政村和居民区。
(3)根据农村居民点在不同地质灾害易发区分区中所占面积的比例和不同地质灾害易发区分区面积占各行政村总面积的比例,将洞头居民点划分为对外搬迁型、限制扩展型、内部拓展型和集聚发展型4种优化类型并提出相应优化方向。