基于三维激光雷达的障碍物检测与跟踪
2019-11-22杨大磊任文峰马庆龙
杨大磊,任文峰,马庆龙
基于三维激光雷达的障碍物检测与跟踪
杨大磊,任文峰,马庆龙
(陕西重型汽车有限公司,陕西 西安 710200)
针对无人车对障碍物运动状态的检测问题,文章提出基于三维激光雷达的动态障碍物检测方法。通过使用PCL库中的欧式聚类法对激光雷达数据进行处理,在此基础上使用匈牙利算法对障碍物进行匹配,并对匹配上的数据运用扩展卡尔曼滤波方法进行融合,实现对障碍物的实时检测。实验结果表明,文章提出的算法能够对密集障碍物和较小的障碍物实现实时准确的跟踪。
聚类;障碍物检测;激光雷达;目标融合;匹配算法
1 引言
随着科学技术的快速发展,无人驾驶汽车在诸多领域取得了很大的进步。无人驾驶汽车系统按照功能可以分为:环境感知,决策规划,车辆控制三个部分。环境感知是其他结构的基础,在驾驶过程中,各种传感器进行信息的获取、融合、分析、识别、处理、规划、决策、控制,并且对多元数据进行融合、根据处理后的数据进行动态场景地图的构建、局部路径规划、智能决策控制等方面的工作。因此行驶环境感知系统相当于无人车的眼睛及大脑,是无人车智能性高低的关键因素。环境感知中常用的传感器有视觉传感器、激光传感器、惯性导航、GPS定位系统等。激光雷达由于其精度高,抗干扰能力强,在无人驾驶汽车中得到了广泛应用。
在未知的环境中,对障碍物的运动状态的检测尤为重要。对障碍物的检测包括:静态障碍物和动态障碍物位置的确定,并且对动态障碍物进行跟踪,从而确定车辆周围的可行驶区域。国内外学者对障碍物检测做了大量的研究。王荣本从传感器的分类出发,系统的分析了障碍物检测方法[1]。王新竹等人将三维激光雷达采集的数据转换为深度图像,对深度图像进行聚类和地面分割,将障碍物分离出来[2]。Pu等人对激光雷达扫描的目标进行了分类,分为地面,地面上和不在地面的目标,然后依据目标的几何形状和运动方向对目标进行分类[3]。张永博等针对智能车辆可通行区域检测问题,提出了一种基于激光点云的道路可通行区域检测算法,可以对前方障碍物依据扫描点距离进行聚类形成不同的点云簇,从而实现对障碍物的检测[4]。Douillard B等从基于栅格地图的处理方式出发,对激光雷达数据进行处理,由于栅格地图简单稳定,因此广泛用于无人车环境感知中[5]。在障碍物检测过程中,聚类、匹配、融合是检测的核心。激光雷达的聚类算法对障碍物检测的准确性有着至关重要的作用。常用的聚类算法有基于K均值的聚类[6],基于密度的聚类,基于神经网络的聚类。同一障碍物在不同时刻进行准确匹配至关重要,准确的匹配是检测的前提条件。由于单一传感器获取环境信息时,存在着一定的局限性。
本文采用VelodyneVLP-16三维激光雷达进行障碍物检测。使用匈牙利匹配算法解决了传统的匹配算法中计算效率低,匹配准确度不高的问题。针对非线性条件下标准卡尔曼滤波估计不准的问题,使用扩展卡尔曼滤波进行改进。通过实验表明整个检测流程能够在每帧100ms内实现准确、稳定地检测和跟踪。
2 目标跟踪理论及算法
随着时代的不断进步,目标跟踪算法在不断的优化,为了满足所需的计算速度和性能,学者们做了大量的研究。本文算法流程如图1所示。
图1 算法流程
2.1 聚类
聚类是按照一定的要求和规律将事物进行分类的过程,在这个过程中没有任何关于类别的先验知识,仅仅考虑对象之间的相似性作为划分的准则。由于自然环境的多变性和复杂性,激光雷达扫描得到的点云数据中包含了物体之间的距离信息,在没有先验信息的条件下,待聚类的个数和空间分布是未知的。为了快速准确的对目标进行聚类,本文使用PCL库中的欧式聚类法。
距离相似性常用于聚类的分析中,点与点之间的距离可以作为样本相似性的度量,也可以反映样本所属类型的差异。欧式聚类的原理为:设点云数据中m个点,这些点组成了n个类型,在p维空间中定义某种性质的点与点之间的亲疏聚类,将距离最小的两个类别合为一类,并迭代计算类之间的距离,直到所有的类别之间的距离大于设定的阈值。对于p维空间中的点i和点j之间的距离可以表示为:
2.2 匹配
基于目标运动的跟踪算法主要是通过预测下一时刻目标可能出现的区域,并以区域中心向外扩充的方式对目标进行跟踪。在跟踪过程中会出现大量冗余的信息,对目标跟踪的精度产生影响。匈牙利算法计算速度快,准确度在无人车驾驶中有着良好的匹配结果。在障碍物检测中,按照传感器进行分类,将目标预测的结果与测量的点云数据进行匹配,正确的匹配关系是后续的融合算法的基础。匹配过程的算法流程为:
Step1:目标预测的结果与测量的点云数据计算关联矩阵;
Step2:利用匈牙利算法进行匹配关系的确定;
Step3:将数据分为匹配上的目标和未匹配上的目标两类,分别保存,为跟踪做准备。
2.3 信息融合
行驶的道路上车辆密集度较高,单一的传感器难以得到目标的准确位置,因此就需要多传感器进行融合,构建精度更高的检测系统。多传感器信息融合技术在解决目标检测和跟踪问题上具有很多优势。首先它能扩展系统空间和时间覆盖度:多个传感器的探测范围更广,能测到单传感器探测不到的地方;而且多个传感器能够实现异步检测,多传感器间相互协同可以提高检测跟踪的概率。在信息融合中,卡尔曼滤波是最常用的方法,它依据接收器收到的观测值作为输入值,按照之前的要求估计量作为滤波的输出值。在实际应用中,状态方程和量测方程为非线性,因此需要对非线性函数进行线性化近似,最常用的是扩展卡尔曼滤波。
3 实验结果及分析
为了验证本文算法的有效性,在ROS系统下采用c++编程实时显示激光雷达检测的情况。在结构化道路上进行实验,本文利用激光雷达生成的三维点云进行显示,并且与摄像头录取的实际路面情况进行对比验证,实验结果如图2所示。在点云显示图中,红色方块表示无人车位置,绿色方框表示检测到的障碍物信息。由图2的实验结果可知:
(1)由图2()中可知无人车前方有四个障碍物交替错开,在图2()的激光雷达点云数据显示中得到与()中相对应的位置分布。
(2)图2()中障碍物比较密集,相距比较近,由图2()中显示结果可以看出能够对相距较近的障碍物进行准确的识别跟踪。说明了匹配与融合算法在实际应用的有效性。
(3)图2()中主要检测左方的静态白色车辆和动态的摩托车,前方的动态车辆,由图2()中的显示结果可以看出能够对动态与静态的车辆准确的跟踪,对于相对较小的摩托车也能够进行准确的跟踪。
图2 激光雷达障碍物检测与跟踪
4 结论
本文针对无人驾驶汽车中的障碍物检测问题,利用激光雷达获取目标的位置信息,对无人车感知系统中障碍物探测做了相关的理论分析,并结合工程实际实现了相关算法,为无人驾驶车辆提供了障碍物信息。主要的工作如下:
(1)根据三维激光雷达的通讯协议和数据结构,对原始点云数据进行解析和预处理,实现数据的坐标转换。
(2)针对障碍物检测问题,根据预处理得到的数据进行欧式距离聚类,在此基础上使用匈牙利算法对估计位置和测量结果进行匹配,对匹配上的航迹数据运用EKF算法进行融合,将未匹配上的航迹提出;对没有匹配上的目标创建新的航迹,及时的对障碍物信息进行更新。
(3)将算法运用到工程实际中,通过仿真实验与道路实测对本文算法的可行性进行验证。实验表明本文提出的算法能够对目标的位置进行准确的估计,而且实时性很高。
[1] 王荣本,赵一兵,李琳辉.智能车辆的障碍物检测研究方法综述[J]. 公路交通科技,2007, 24(11).
[2] 王新竹,李骏,李红建.基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法[J].吉林大学学报(工学版),2016, 46(2):360- 365.
[3] Pu S, Rutzinger M, Vosselman G. Recognizing basic structures from mobile laser scanning data for road inventory studies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6-supp- S):0-0.
[4] 张永博,李必军,陈诚.激光点云在无人驾驶路径检测中的应用[J]. 测绘通报, 2016(11):70-73+78.
[5] Douillard B, Underwood J, Melkumyan N. Hybrid elevation maps: 3D surface models for segmentation[C]// IEEE/RSJ International Conference on Intelligent Robots & Systems. 2010.
[6] Yiakopoulos C T, Gryllias K C, Antoniadis I A . Rolling element bearing fault detection in industrial environments based on a K-means clustering approach[J]. Expert Systems with Applications, 2011, 38(3):2888-2911.
Obstacle detection and track based on 3D lidar
Yang Dalei, Ren Wenfeng, Ma Qinglong
(Shaanxi Heavy Duty Automobile Co., Ltd, Shaanxi Xi'an 710200)
For the problem object detector in autonomous vehicle system, this paper presents a dynamic obstacle detection method based on 3D lidar. For real-time detection of obstacles, the Euclidean clustering method in the PCL library is used to process the lidar data, and the Hungarian algorithm is used to match the obstacles, and the extended kalman filter method is used to fuse the match obstacles. The experimental results show that the algorithm can track the dense and small obstacles accurately and real time.
Cluster; Obstacle detection; Lidar; Target fusion; Match algorithms
B
1671-7988(2019)21-53-03
TP212.6
B
1671-7988(2019)21-53-03
杨大磊,就职于陕西重型汽车有限公司。研究方向:智能驾驶。
10.16638/j.cnki.1671-7988.2019.21.018
CLC NO.:TP212.6