生产率增长:全球模式、决定因素及其在中国的应用(下)
2019-11-05金墉诺曼·劳亚
金墉 诺曼·劳亚
【提要】本文是世界银行长期增长模型项目(LTGM)关于生产率的扩展研究。通过对文献的回顾,本文识别了经济生产率的五个主要决定因素:创新、教育、市场效率、基础设施和制度。本文构建了代表生产率决定因素各主要类别的指标体系,并通过主成分分析法将多指标转化为一个总体指标。我们的数据来源于1985-2015年间100多个国家。同时,本文提出了一个测算全要素生产率(TFP)的方法,并评估了不同地区和收入群体的生产率增长模式。本文还考察了TFP与五个决定因素之间的关系。通过将生产率增长的差异分解为五个决定因素所解释的份额,可以确定生产率增长与总体决定指标之间的关系。结果显示,在决定TFP增长差异的因素中,近10年来对OECD国家和发展中国家的TFP增长影响最大的因素分别是市场效率和教育。回归结果表明,在控制了国别效应和时间效应后,TFP增长与我们所提出的TFP决定因素指标具有显著的正向关系,与初始TFP具有负向关系。在此基础上,本文模拟了TFP增长的潜在路径,并基于地理区位和收入水平的区别介绍了不同国家的模拟结果。此外,本文模拟了中国在不同情境下的TFP增长潜在路径。
【关键词】生产率;创新;教育;效率;基础设施;制度;增长
四、结果
(一)全要素生产率
从图2可以看出,对于21个OECD成员国而言,1985-2004年TFP年均增长率的中位数和(简单)平均值均为正值,2005-2014年则下降至0以下;而在93个发展中国家中,1985-1994年TFP年均增长率的中位数和(简单)平均值为负值,1995-2014年上升至0以上。图3展示了按区域划分的发展中国家TFP年均增长率的中位数和(简单)平均值。在东亚和太平洋地区,过去30年的TFP增长率为正,在0.4%至1.3%之间。在欧洲和中亚地区,1985-1994年TFP增长率为负,在1995-2004年上升至2%以上,在2005-2014年下降至1.2%左右。拉丁美洲和加勒比地区的TFP增长率从1985-2004年的-0.4%左右上升至2005-2014年的0.5%左右。在中东北非地区,TFP增长率从1985-1994年的接近于0或负增长上升至1995-2004年的0.5%左右,2005-2014年再次下滑至-0.5%左右。南亞地区过去30年的TFP增长率为正值,在0.3%至1.5%之间。在撒哈拉以南非洲地区,TFP增长率从1985-1994年的-1%左右上升至1994-2014年的1%。图4展示了根据GDP加权的区域TFP平均增长率(世界银行,2017d),其趋势与图3中未加权平均增长率的趋势相似。
(二)主要决定因素指标
图5为21个OECD国家和115个发展中国家TFP主要决定因素子成分指标以及总体决定因素指标在不同时间阶段的中位数。与OECD国家相比,发展中国家的上述指标中位数都较低。一个明显的区别是,发展中国家的创新指标一直位于最低水平,而OECD成员国的创新指标则随着时间推移有所上升。此外,对于发展中国家和OECD成员国,教育、市场效率和基础设施指标在过去几十年都保持了增长,但制度指标没有变化。
(三)主要决定因素指标与TFP增长之间的关系
1.主要决定因素指标对TFP增长方差的相对贡献。图6展示了全部样本国家、OECD国家和发展中国家的各项TFP决定因素指标对TFP增长贡献率的方差分解(控制了5年滞后期TFP水平和时间效应)。对于OECD国家,一个值得关注的趋势是,市场效率指标对TFP增长率的贡献上升,在过去10年对TFP增长率方差的解释程度为45%;而基础设施指标的贡献呈下降趋势且对TFP增长率方差的解释程度最小。对于发展中国家,1985-1994年期间TFP决定因素对TFP增长率方差解释力最高的指标是制度,但其贡献率随后有所下降。在过去20年里,教育指标对TFP增长的贡献有所上升,其对TFP增长率方差的解释程度在过去10年接近50%。
方差分解分析有助于理解各国TFP增长差异的驱动因素。但是,该分析并没有说明对于特定国家而言,什么才是驱动TFP增长最重要或最关键的因素。为此,我们需要对TFP的各项决定因素进行国别比较。我们在第5部分讨论了有关模拟和情境分析的结果。但在此之前,我们还需要对总体决定因素指标对TFP增长的影响进行合理的估计。
2.总体决定因素指标与TFP增长率之间的关系。表1给出了公式2的回归结果,其中TFP增长率是关于滞后期总体决定因素指标和滞后期TFP水平的函数(考虑了国别效应和时间效应)。我们没有尝试将五个子成分指标作为单独的变量进行回归,因为它们之间的相关性非常高,且其估计边际效应会受到多重共线性的影响。
如表1所示,滞后期总体决定因素指标和滞后期TFP水平在所有回归中(无国别效应、随机国别效应和固定国别效应)都在统计学上显著。根据Hausman检验,如果不考虑相互的国别效应可能会存在估计偏差,我们选择具有固定国别效应(相关但不随机)的回归。
在固定效应模型中,在控制了滞后期TFP水平和国别效应、时间效应后,滞后期总体决定因素指标每提高1个百分点,TFP年均增长率提高0.05个百分点。由于函数收敛,在其他变量保持不变的情况下,滞后期TFP每增长1个百分点,TFP年均增长率下降0.10个百分点。这意味着TFP水平较高的国家需要比那些TFP水平较低的国家在各项决定因素指标上有更多的提升,以实现相同的TFP增长率。滞后3年和滞后7年的回归结果在符号和显著性上都是稳健的。当我们使用WDI数据库来构建TFP水平和增长率指标,结果同样是稳健的。
五、模拟和情境分析
(一)按区域和收入水平划分的国家组别
在本章中,我们模拟了78个中低收入发展中国家(即2014年人均GDP低于12,056美元的国家,以2010不变价美元计算)的TFP增长率变化。我们给出了按区域或收入水平分类的模拟结果。在更广泛的意义上,长期增长模型(LTGM)工具包可以用于为更多国家预测TFP增长率。LTGM的使用者能够将TFP增长的外生路径的假设替换为由创新、教育、市场效率、基础设施、制度改善组成的总体决定因素指标。
本文提供了4种情境分析,并给出了提高TFP决定因素指标至区域或世界基准(或领先水平)的不同方式和程度。我们使用固定效应回归结果将TFP增长的变化与总体决定因素指标的变化联系起来。TFP的相应增长直接取决于一国TFP决定因素的改善速度,而与过去TFP的改善程度成反方向变化。因此,在那些TFP决定因素指标与基准水平存在较大差距的国家,如果能够推动决定因素的改革,其TFP将会出现更大的增长。反过来,过去TFP增长较快的国家会面临TFP增速放缓的问题。改善TFP决定因素的积极影响以及过去TFP表现的负面影响相叠加,就构成了一个有趣的、非线性的TFP增长预测路径:在大多数情况下,TFP的增长路径是一个凸函数,即以边际递减的速度增长,在达到最大之后开始下降或保持稳定。由于在模拟中改进TFP决定因素的改革并非立即进行,而是随着时间推移逐步推进的(在两种情境中,模仿基准国家过去30年的实际轨迹),预测的TFP增长路径有一个额外的凸性来源,因为TFP决定因素指标的增长率会随着时间趋于下降。
1.情境I:TFP决定因素改善至区域内最高水平。情境I假设一国将其TFP总体决定因素指标提高至区域内发展中国家(非OECD成员国)的最高水平。我们假定一国TFP总体决定因素指标从初始值(2014年)开始以恒定的速度增长,经过15年达到基准国家的当前水平,并在其后继续以相同的速度增长(见表2)。
图7描绘了情境I中的TFP平均增长率。对于东亚和太平洋地区,1985-2014年期间其TFP平均增长率是各区域的历史最高点,预计TFP平均增长率将在未来12年上升至2.5%,随后逐渐下降。在撒哈拉以南非洲地区,预计TFP平均增长率将在未来15年上升至1.9%,这一增幅是所有地区在过去相应TFP增速水平上所达到的最大增幅。在欧洲和东亚地区、拉丁美洲和加勒比地区以及中东北非地区,模拟的TFP平均增长率相似,在未来23年增长到近1%,随后逐渐下降。在南亚地区,TFP平均增长率维持在0.6%-0.8%的区间内。按区域基准国家的水平进行估算,在一定程度上限制了一国TFP增长取得进展的可能性,因为区域基准国家自身可能并不是最领先的,例如南亚地区的印度。
2.情境II:遵循区域内TFP总体决定因素指标改善幅度最大的轨迹。情境II假设一国复制了过去30年区域基準国家TFP总体决定因素指标的年度增长轨迹。如表3所示,情境II中的区域基准国家是指在1985-2014年期间TFP总体决定因素指标增幅最大的国家(与区域内所有发展中国家相比)。
我们将基准国家1985-2014年期间TFP总体决定因素指标年均变化率应用于同一区域所有国家,以2014年作为初期估算未来30年的TFP增长路径,并以2005-2014年的年均变化率估算后续年份的TFP增长路径。
图8反映了情境Ⅱ的TFP平均增长率预测值。在东亚和太平洋地区,从1985-2014年历史最高TFP年均增长率开始,预计在未来15年TFP年均增长率将上升至1.7%,随后有所下降。在拉丁美洲和加勒比地区以及撒哈拉以南非洲地区,预计未来30多年的TFP年均增长率分别上升至0.9%和1.2%。欧洲和中亚地区以及中东北非地区的TFP年均增长率预计在未来20年分别上升至0.7%和0.6%,随后逐步下降。在南亚地区,TFP增长率预计保持在0.6%-0.9%的水平上。
3.情境Ⅲ:TFP决定因素指标提高至所有发展中国家的最高水平。情境Ⅲ假设一国(发展中国家)将其TFP总体决定因素指标提高至所有发展中国家的最高水平(2014年),即达到韩国的水平。假定一国TFP总体决定因素指标在15年内线性上升至韩国2014年的水平,并在此后继续以同样的增速增长。
如图9a所示,对于与基准水平差距最大、TFP增长率相对较低的撒哈拉以南非洲地区,其TFP增长率预计将在11年实现最大幅度的改善(与1985-2014年平均增幅相比),达到3.4%的水平,随后有所下降。与撒哈拉以南非洲地区相似,南亚地区TFP增长率预计将在11年内上升至3.2%的水平,随后开始下降。TFP历史平均增长率最高的东亚和太平洋地区,其TFP增长率预计在11年内上升至2.5%,是所有地区相较于历史水平增幅最小的地区,反映了该地区在过去保持着很高的TFP增长率。拉丁美洲和加勒比地区以及中东北非地区在过去保持了负的TFP增长率,预计未来15年这两个地区的TFP平均增长率将分别上升至2.2%和2.1%。在欧洲和中亚地区,由于过去TFP也是负增长,预计其TFP平均增长率将在16年内上升至1.7%,随后开始下降。
我们进一步按收入水平对样本国家进行了划分,并得出了有趣的结论。图9b显示,低收入国家的TFP平均增长率有望在11年内提高至3.3%,中低收入国家在12年内提高至2.6%,中高收入国家在16年内提高至1.8%。在所有情况下,TFP增长率都在达到峰值后出现下降,在35年内达到1.5%左右的水平。这些结论进一步佐证了按区域分类的结论:TFP决定因素指标与基准国家差距较大的国家、地区或国家组,如果能够推动相应的改革,将会获得更大的收益,并且TFP将出现大幅增长;对于那些TFP增长率已经很高或者TFP增幅很大的国家,TFP增长率将趋于下降。
4.情境Ⅳ:遵循所有发展中国家TFP总体决定因素指标改善幅度最大的路径。情境Ⅳ假设一国复制了世界基准国家的TFP年度变化轨迹。在所有发展中国家(非OECD成员国)中,1985-2014年期间TFP总体决定因素指标改善幅度最大的国家是韩国。我们将韩国1985-2014年期间TFP总体决定因素指标年均变化率应用于其他国家,以2014年作为初期估算未来30年的TFP增长路径,并以2005-2014年的年均变化率估算后续年份的TFP增长路径。
如图10a所示,对于与基准水平差距最大、TFP增长率相对较低的撒哈拉以南非洲地区,其TFP增长率预计将在16年内实现最大幅度的改善(与1985-2014年平均增幅相比),达到2.1%的水平。南亚地区TFP增长率预计在16年内提高至2.0%,此后开始下降。在历史平均增速最高的中亚和太平洋地区,TFP平均增长率预计在未来15年达到1.7%,在所有地区中增幅最小。过去TFP负增长的拉丁美洲和加勒比地区、中东北非地区以及欧洲和中亚地区,预计其TFP增长率将在19-20年内上升至1.2%-1.4%的水平。
图10b为按收入分组的估算结果。低收入国家TFP平均增长率提高幅度最大,预计在16年后达到2.0%,中低收入国家预计在17年后提高到1.7%,中高收入国家预计在20年后提高到1.2%。图10的结果进一步证明,对于撒哈拉以南非洲等与基准水平具有较大差距的国家、区域或国家组,未来TFP将有更大的增长潜力;而TFP增长较快的国家或地区,如东亚和太平洋地区,后续TFP增速将放缓。
(二)中国:国别分析
如前所述,LTGM工具包可以对各国不同情境下的TFP增长路径进行模拟。作为案例,本文将其应用于中国的两种情境,见图11。在每种情境中,我们假设到2050年TFP决定因素指标的增长路径是给定的(图11,左),从而得到同期TFP增长路径(图11,右)。
一个重要影响因素是TFP增长率的历史水平,其不仅决定了TFP增长的初始值,也决定了未来进一步提高TFP增长率的难度。对于中国而言,我们将TFP增长率的历史水平设定为可以获得数据的最近5年(2010-2014年)的平均水平。其他国家进行情境模拟时也可以采用类似的分析和选择。
在情境Ⅰ中,我们假设中国TFP总体决定因素指标达到所有发展中国家的最高水平(即韩国)。我们分析了两种可能,分别是在15年(图11,上图橙色线条)和30年(图11,上图绿色线条)达到韩国的水平。这两种情况都背离了过去的趋势,橙色线条表现尤为明显。TFP增长所带来的收益也很大:在快速改善的案例中,TFP增长率在5年内从1.2%上升至1.6%,在10年内达到1.9%,随后逐渐下降,到2050年下降至1.3%左右。情境Ⅰ代表着TFP增长得到持续、快速的根本性改善。情境Ⅱ则代表了一个更为缓和、但更容易实现的可能。
在情境Ⅱ中,假设中国TFP总体决定因素指标变化遵循1985-2014年改善幅度最大国家(韩国)的轨迹,并保持这一趋势(图11,下图绿色线条)。那么,中国TFP增长率将在13年内从1.2%上升至1.4%,并逐渐下降至2050年的1%左右。
与世界上大多数国家一样,持续的TFP增长对于中国经济增长至关重要。但TFP增长本身并不能作为高速经济增长目标的支撑。高速经济增长必须伴随着在物质资本积累、劳动力参与数量和质量以及国内储蓄等方面的努力。
六、结论
本文是世界银行长期增长模型(LTGM)TFP模块的背景研究。本文为世界上大多数发展中国家提供了预测其未来TFP增长路径的方法,当然前提是这些国家遵循相应的改革计划以达到区域或全球领先国家的水平。
我们在对文献进行综述的基础上,选择创新、教育、市场效率、基础设施和制度作为五个TFP决定因素。对于每一个决定因素,我们使用因子分析方法构建了相应的指标,再使用主成分分析法将五个子成分指标组合成一个总体指标。
通过分析各子成分指标对TFP增长率方差的贡献,我们发现,对于OECD国家而言,近10年市场效率对TFP增长率方差的贡献最大,基础设施贡献最小;对于发展中国家而言,教育的贡献不断上升,是近10年来最主要的决定因素。虽然这种方法不能作为政策改革的指导,但它解释了不同时期、不同发展阶段TFP增长为什么会出现差异。
我们的回归分析表明,TFP总体决定因素指标与TFP增长率显著相关(控制了初始TFP水平以及国别效应和时间效应)。在那些TFP决定因素改善空间更大、改革力度更强的国家,TFP增长率在短期内将有较大提高。从长期看,TFP增长达到峰值后会开始放缓。
从历史水平来看,在重大改革的最优情境中,TFP增长幅度预计在2.5-3个百分点,这一增幅不足以支持过高的经济增长目标。在提高生产率的同时,储蓄、投资、劳动力、人力资本形成应继续在各国的增长和发展议程中占据重要地位。
当然,本文的研究难免有一些不足之处,在解释结果时应加以考虑。一个问题是TFP决定因素可能是TFP增长的内生变量。为了解决内生性问题,我们在方差分解和回归分析中使用了TFP决定因素指标的滞后观测值。这种方法可能比工具变量更好(Young,2017)。另一个问题是我们没有将生产率的所有决定因素都纳入在内,无论是一级指标还是二级指标。例如,我们没有考虑地理条件、劳动力人口、收入和财富不平等或者企业家精神和管理能力等因素(Feyrer, 2007; Mastromarco and Zago, 2012; Kremer, Rao and Schilbach, 2019)。为此,我们加入了国别效应来解决这个问题,这是一种控制生产率决定因素的合理策略。此外,我们还纳入了一些指标,这些指标不仅体现了其狭义的定义,还代表了我们在研究中没有涉及的更广义的变量。第三个问题涉及将生产率作为残差的众所周知的缺点。从某种意义上说,索洛剩余衡量的是“我们无法获知的因素”(Abramovitz, 1956),不仅包括生产率,还包括其他很多变量,如过剩产能、自然资源、异质性、无形资本等(Hulten, 2001; Corrado, Hulten and Sichel, 2009)。但我们认为,关注一段时期TFP平均增長率(而不是TFP水平或TFP增长率波动),有助于解释TFP增长(Jorgenson and Griliches, 1967)。第四个问题是我们的研究侧重于全球模式,没有充分考虑到国家的异质性。TFP决定因素指标对TFP增长方差的相对贡献以及总体决定因素指标对TFP增长的影响,可能因国家和区域不同而存在差异,主要原因是经济发展水平和政治社会环境有所不同。尽管存在上述不足之处,我们希望本文及附带的工具包可以成为研究人员和决策者分析特定国家生产率和增长的起点。
参考文献
[1]Abdih, Yasser, and Frederick Joutz. 2006. “Relating the Knowledge Production Function to Total Factor Productivity: An Endogenous Growth Puzzle.”WP/05/74. IMF Working Paper.
[2]Abramovitz, M. 1956. “Resource and Output Trends in the United States since 1870.”AmericanEconomic Review 46: 5-23.
[3]Acemoglu, Daron, Simon Johnson, and James Robinson. 2004. “Institutions as the Fundamental Cause of Long-Run Growth.” 10481. NBER Working Paper.
[4]Acemoglu, Daron, Simon Johnson, and James A. Robinson. 2001. “The Colonial Origins of Comparative Development: An Empirical Investigation.” American Economic Review 91 (5): 1369–1401. https://doi.org/10.1257/aer.91.5.1369.
[5]Aghion, Philippe, and Howitt. 1992. “A Model of Growth through Creative Destruction.”Econometrica 60 (2): 323–51. https://doi.org/10.2307/2951599.
[6]Aguiar, Angel, Badri Narayanan, and Robert McDougall. 2016. “An Overview of the GTAP 9 Data Base.” Journal of Global Economic Analysis 1 (1): 181–208. https://doi.org/10.21642/JGEA.010103AF.
[7]Alfaro, Laura, Areendam Chanda, SebnemKalemli-Ozcan, and Selin Sayek. 2004. “FDI and Economic Growth: The Role of Local Financial Markets.” Journal of International Economics 64 (1): 89–112. https://doi.org/10.1016/S0022-1996(03)00081-3.
[8]Alfaro, Laura, SebnemKalemli-Ozcan, and Selin Sayek. 2009. “FDI, Productivity and Financial Development.” World Economy 32 (1): 111–35. https://doi.org/10.1111/j.1467-9701.2009.01159.x.
[9]Ark, Bart van, Mary OMahony, and Marcel P Timmer. 2008. “The Productivity Gap between Europe and the United States: Trends and Causes.” Journal of Economic Perspectives 22 (1): 25–44. https://doi.org/10.1257/jep.22.1.25.
[10]Arnold, Jens, Giuseppe Nicoletti, and Stefano Scarpetta. 2008. “Regulation, Allocative Efficiency and Productivity in OECD Countries.” OECD Economics Department Working Papers. https://doi.org/10.1787/241447806226.
[11]Aschauer, David Alan. 1989. “Is Public Expenditure Productive?” Journal of Monetary Economics 23 (2): 177–200. https://doi.org/10.1016/0304-3932(89)90047-0.
[12]Azen, Razia, and David V Budescu. 2003. “The Dominance Analysis Approach for Comparing Predictors in Multiple Regression.” Psychological Methods 8 (2): 129–48. https://doi.org/10.1037/1082-989X.8.2.129.
[13]Barro, Robert J., and Jong Wha Lee. 2013. “A New Data Set of Educational Attainment in the World, 1950-2010.” Journal of Development Economics 104: 184–98. https://doi.org/10.1016/j.jdeveco.2012.10.001.
[14]Barro, Robert J., and Xavier Sala-I-Martin. 1992. “Public Finance in Models of Economic Growth.” The Review of Economic Studies 59 (4): 645. https://doi.org/10.2307/2297991.
[15]Barro, Robert J., and Xavier I. Sala-i-Martin. 2004. “Capter 10. Growth Accounting.” In Economic Growth, 2nd ed. Cambridge, Massachusetts: The MIT Press.
[16]Barro, Robert J. 1990. “Government Spending in a Simple Model of Endogeneous Growth.” Journal of Political Economy 98 (5): S103–25. https://doi.org/10.1086/261726.
[17]———. 1991. “Economic Growth in a Cross-Section of Countries.” The Quarterly Journal of Economics 106 (2): 407–43. https://doi.org/10.2307/2937943.
[18]———. 2001. “Human Capital and Growth.” The American Economic Review 91 (2): 12–17. https://doi.org/10.2307/2677725.
[19]Bartelsman, Eric J., Pieter A. Gautier, and Joris De Wind. 2016. “Employment Protection, Technology Choice, and Worker Allocation.” International Economic Review 57 (3): 787–826. https://doi.org/10.1111/iere.12176.
[20]Beck, Thorsten, Ross Levine, and Norman Loayza. 2000. “Finance and the Sources of Growth.” Journal of Financial Economics 58 (1–2): 261–300. https://doi.org/10.1016/S0304-405X(00)00072-6.
[21]Ben-David, Dan, and David H. Papell. 1998. “Slowdowns and Meltdowns: Postwar Growth Evidence from 74 Countries.” Review of Economics and Statistics 80 (4): 561–71. https://doi.org/10.1162/003465398557834.
[22]Benhabib, J., and Mark M. Spiegel. 2005. “Chapter 13 Human Capital and Technology Diffusion.” Handbook of Economic Growth. https://doi.org/10.1016/S1574-0684(05)01013-0.
[23]Benhabib, J, and M Spiegel. 1994. “The Role of Human Capital in Economic Development. Evidence from Aggregate Cross-Country Data.” Journal of Monetary Economics 144: 117–43. https://doi.org/10.1016/0304-3932(94)90047-7.
[24]Benhabib, Jess, and M.M. Spiegel. 1994. “The Role of Human Capital in Economic Development Evidence from Aggregate Cross-Country Data.” Journal of Monetary Economics 34 (2): 143–173. https://doi.org/http://dx.doi.org/10.1016/0304-3932(94)90047-7.
[25]Benhabib, Jess, and Mark M Spiegel. 2005. “Human Capital and Technology Diffusion.” In Handbook of Economic Growth, 1:936–65. https://doi.org/10.1016/S1574-0684(05)01013-0.
[26]Bergoeing, Raphael, Norman V. Loayza, and Facundo Piguillem. 2016. “The Whole Is Greater than the Sum of Its Parts: Complementary Reforms to Address Microeconomic Distortions.” World Bank Economic Review 30 (2): 268–305. https://doi.org/10.1093/wber/lhv052.
[27]Borensztein, E., J. De Gregorio, and J-W. Lee. 1998. “How Does Foreign Direct Investment Affect Economic Growth?” Journal of International Economics 45 (1): 115–35. https://doi.org/10.1016/S0022-1996(97)00033-0.
[28]Bridgman, Benjamin, Shi Qi, and James A. Schmitz. 2009. “The Economic Performance of Cartels: Evidence from the New Deal U.S. Sugar Manufacturing Cartel, 1934–74.” 437. Federal Reserve Bank of Minneapolis Staff Report.
[29]Bronzini, Raffaello, and Paolo Piselli. 2009. “Determinants of Long-Run Regional Productivity with Geographical Spillovers: The Role of R&D, Human Capital and Public Infrastructure.” Regional Science and Urban Economics 39 (2): 187–99. https://doi.org/10.1016/j.regsciurbeco.2008.07.002.
[30]Budescu, David V. 1993. “Dominance Analysis: A New Approach to the Problem of Relative Importance of Predictors in Multiple Regression.” Psychological Bulletin. https://doi.org/10.1037/0033-2909.114.3.542.
[31]Buera, Francisco J, Joseph P Kaboski, and Yongseok Shin. 2011. “American Economic Association Finance and Development: A Tale of Two Sectors.” The American Economic Review 101 (5): 1964–2002. https://doi.org/10.1257/aer.
[32]Caballero, and Hammour. 1998. “Jobless Growth: Appropriability, Factor Substitution, and Unemployment.” Carnegie-Rochester Conference Series on Public Policy 48: 95–99. https://doi.org/http://dx.doi.org/10.1016/S0167-2231(98)00016-5.
[33]Caballero, R. J., and M. L. Hammour. 1996. “On the Timing and Efficiency of Creative Destruction.” The Quarterly Journal of Economics 111 (3): 805–52. https://doi.org/10.2307/2946673.
[34]Calderón, César, and Luis Servén. 2010. “Infrastructure and Economic Development in Sub-Saharan Africa.” Journal of African Economies 19 (Supplement 1): i13–87. https://doi.org/10.1093/jae/ejp022.
[35]———. 2012. “Infrastructure in Latin America. ”The Oxford Handbook of Latin American Economics. https://doi.org/10.1093/oxfordhb/9780199571048.013.0026.
[36]———. 2014. “Infrastructure, Growth, and Inequality: An Overview.” World Bank Policy Research Working Paper. https://doi.org/10.1596/1813-9450-7034.
[37]Canning, David, and Peter Pedroni. 2008. “Infrastructure, Long-Run Economic Growth and Causality Tests for Cointegrated Panels.” Manchester School 76 (5): 504–27. https://doi.org/10.1111/j.1467-9957.2008.01073.x.
[38]Caselli, Francesco. 2005. “Chapter 9 Accounting for Cross-Country Income Differences.” Handbook of Economic Growth. https://doi.org/10.1016/S1574-0684(05)01009-9.
[39]Centre for Economic Performance. 2017. “World Management Survey.” 2017.
[40]Céspedes, N., N. Loayza, and N. Ramírez.“Economic Growth in Peru: Causes and Consequences [in Spanish]. ”Lima: Fondo Editorial de la Universidad del Pacífico (forthcoming).
[41]Chanda, Areendam, and Carl Johan Dalgaard. 2008. “Dual Economies and International Total Factor Productivity Differences: Channelling the Impact from Institutions, Trade, and Geography.”Economica 75 (300): 629–61. https://doi.org/10.1111/j.1468-0335.2007.00673.x.
[42]Chang, Roberto, Linda Kaltani, and Norman V. Loayza. 2009. “Openness Can Be Good for Growth: The Role of Policy Complementarities.” Journal of Development Economics 90 (1): 33–49. https://doi.org/10.1016/j.jdeveco.2008.06.011.
[43]Chen, Derek H C, and Carl J Dahlman. 2004. “Knowledge and Development A Cross-Section Approach.” 3366. World Bank Policy Research Working Paper.
[44]Chenery, Hollis B. 1960. “Patterns of Industrial Growth.” The American Economic Review 50 (4): 624–54. https://doi.org/10.1257/jep.6.3.79.
[45]Cingano, Federico. 2014. “Trends in Income Inequality and Its Impact on Economic Growth.” OECD Social, Employment, and Migration Working Papers, no. 163: 0_1,5-59. https://doi.org/http://dx.doi.org/10.1787/5jxrjncwxv6j-en.
[46]Cirera, Xavier, and William F. Maloney. 2017. “The Innovation Paradox : Developing-Country Capabilities and the Unrealized Promise of Technological Catch-Up.” Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/28341.
[47]Coe, David T., Elhanan Helpman, and Alexander W. Hoffmaister. 2009. “International R&D Spillovers and Institutions.” European Economic Review 53 (7): 723–41. https://doi.org/10.1016/j.euroecorev.2009.02.005.
[48]Coe, David T, and Elhanan Helpman. 1995. “International R&D Spillovers.” European Economic Review 39 (5): 859–87. https://doi.org/10.1016/0014-2921(94)00100-E.
[49]Coe, David Theodore, Elhanan Helpman, and Alexander W. Hoffmaister. 1997. “North-South R&D Spillovers.” Economic Journal 107 (440): 134–49. https://doi.org/10.1111/1468-0297.00146.
[50]Comin, Diego, and Bart Hobijn. 2010. “An Exploration of Technology Diffusion.” American Economic Review 100 (5): 2031–59. https://doi.org/10.1257/aer.100.5.2031.
[51]Comin, Diego, Bart Hobijn, and Emilie Rovito. 2008. “Technology Usage Lags.” Journal of Economic Growth 13 (4): 237–56. https://doi.org/10.1007/s10887-008-9035-5.
[52]Comin, Diego, and MartíMestieri. 2018. “If Technology Has Arrived Everywhere, Why Has Income Diverged?” American Economic Journal: Macroeconomics 10 (3): 137–78. https://doi.org/10.1257/mac.20150175.
[53]Corrado, C., C. Hulten, and D. Sichel. “Intangible Capital and U.S. Economic Growth.” The Review of Income and Wealth 55(3): 661-685.
[54]Dabla-norris, Era, and Kalpana Kochhar. 2015. “Causes and Consequences of Income Inequality : A Global Perspective.” IMF Staff Discussion Note. https://doi.org/DOI:
[55]Dar, Atul A., and Sal AmirKhalkhali. 2002. “Government Size, Factor Accumulation, and Economic Growth: Evidence from OECD Countries.” Journal of Policy Modeling 24 (7–8): 679–92. https://doi.org/10.1016/S0161-8938(02)00163-1.
[56]Daron Acemoglu, And, and Fabrizio Zilibotti. 2001. “Productivity Differences.” Quarterly Journal of Economics 116 (2): 563–606. https://doi.org/10.1162/00335530151144104.
[57]Davis, Steven J., John Haltiwanger, and Scott Schuh. 1996. “Small Business and Job Creation: Dissecting the Myth and Reassessing the Facts.” Small Business Economics 8 (4): 297–315. https://doi.org/10.1007/BF00393278.
[58]Devadas, Sharmila, and Steven Michael Pennings. 2018. “Assessing the Effect of Public Capital on Growth: An Extension of the World Bank Long-Term Growth Model.” World Bank Policy Research Working Paper, No. 8604.
[59]Djankov, Simeon, Rafael La Porta, Florencio Lopez-de-Silanes, and Andrei Shleifer. 2002. “The Regulation of Entry.” The Quarterly Journal of Economics 117 (1): 1–37.
[60]Dollar, David, and Aart Kraay. 2004. “Trade, Growth, and Poverty.” The Economic Journal 114 (493): F22–49. https://doi.org/10.1111/j.0013-0133.2004.00186.x.
[61]Easterly, William. 2001. “The Middle Class Consensus and Economic Development.” Journal of Economic Growth 6 (4): 317–35. https://doi.org/10.1023/A:1012786330095.
[62]Easterly, William, and Ross Levine. 1997. “Africas Growth Tragedy.” The Quarterly Journal of Economics 112 (4): 1203–50. https://doi.org/10.1002/ps.3780.
[63]———. 2003. “Tropics, Germs, and Crops: How Endowments Influence Economic Development.” Journal of Monetary Economics. https://doi.org/10.1016/S0304-3932(02)00200-3.
[64]Easterly, William, and Ross E. Levine. 2001. “Its Not Factor Accumulation: Stylized Facts and Growth Models.” The World Bank Economic Review 15 (2): 177–219. https://doi.org/10.2139/ssrn.269108.
[65]Engerman, S, and Kenneth L. Sokoloff. 2000. “Institutions, Factor Endowments, and Paths of Development in the New World.” Journal of Economic Perspectives 14 (3): 217–32. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Institutions+,+Factor+Endowments+,+and+Paths+of+Development+in+the+New+World#1.
[66]Erosa, Andrés, Tatyana Koreshkova, and Diego Restuccia. 2010. “How Important Is Human Capital? A Quantitative Theory Assessment of World Income Inequality.” Review of Economic Studies 77 (4): 1421–49. https://doi.org/10.1111/j.1467-937X.2010.00610.x.
[67]Fagerberg, Jan. 2000. “Technological Progress, Structural Change and Productivity Growth: A Comparative Study.” Structural Change and Economic Dynamics 11 (4): 393–411. https://doi.org/10.1016/S0954-349X(00)00025-4.
[68]Feenstra, Robert C., Robert Inklaar, and Marcel P. Timmer. 2015. “The Next Generation of the Penn World Table.” American Economic Review 105 (10): 3150–82. https://doi.org/10.1257/aer.20130954.
[69]Feyrer, James. 2007. “Demographics and Productivity.” The Review of Economics and Statistics 89 (1): 100-109.
[70]Foster, L., Haltiwanger, J. C., & Krizan, C. J. 2001. “Aggregate Productivity Growth. Lessons from Microeconomic Evidence.” In New Developments in Productivity Analysis, pp 303-372. University of Chicago Press.
[71]Furman, Jeffrey L., and Richard Hayes. 2004. “Catching up or Standing Still? National Innovative Productivity among ‘follower Countries, 1978-1999.” Research Policy 33 (9): 1329–54. https://doi.org/10.1016/j.respol.2004.09.006.
[72]Galiani, Sebastian, Paul Gertler, and Ernesto Schargrodsky. 2005. “Water for Life: The Impact of the Privatization of Water Services on Child Mortality.” Journal of Political Economy 113 (1): 83–120. https://doi.org/10.1086/426041.
[73]Ghali, Khalifa H. 1999. “Government Size and Economic Growth: Evidence from a Multivariate Cointegration Analysis.” Applied Economics 31 (8): 975–87. https://doi.org/10.1080/000368499323698.
[74]Giavazzi, Francesco, and Guido Tabellini. 2005. “Economic and Political Liberalizations.” Journal of Monetary Economics 52 (7): 1297–1330. https://doi.org/10.1016/j.jmoneco.2005.05.002.
[75]Griffith, Rachel, Stephen Redding, and John Van Reenen. 2004. “Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries.” The Review of Economics and Statistics 86 (4): 883–95. https://doi.org/10.1162/0034653043125194.
[76]Gr?mping, Ulrike. 2007. “Estimators of Relative Importance in Linear Regression Based on Variance Decomposition.” American Statistician 61 (2): 139–47. https://doi.org/10.1198/000313007X188252.
[77]Grossman, Gene M., and Elhanan Helpman. 1991. “Quality Ladders in the Theory of Growth.” The Review of Economic Studies 58 (1): 43. https://doi.org/10.2307/2298044.
[78]Guellec, Dominique, and B. van Pottelsberghe de la Potterie. 2004. “From R&D to Productivity Growth: Do the Institutional Settings and the Source of Funds of R&D Matter?” Oxford Bulletin of Economics and Statistics 66 (3): 353–78. https://doi.org/10.1111/j.1468-0084.2004.00083.x.
[79]Hall, Robert E, and Charles I Jones. 1999. “Why Do Some Countries Produce so Much More Outper per Worker than Others?”Quarterly Journal of Economics 114 (1): 83–116. https://doi.org/10.1162/003355399555954.
[80]Haltiwanger, John, Stefano Scarpetta, and Helena Schweiger. 2008. “Assessing Job Flows across Countries: The Role of Industry, Firm Size and Regulations.” 13920. NBER Working Paper. https://doi.org/10.1017/CBO9781107415324.004.
[81]Hanushek, Eric A., and Ludger Woessmann. 2015. “The Knowledge Capital of Nations: Education and the Economics of Growth. ”The MIT Press.
[82]Hicks, John. 1939. “Value and Capital. ”Edited by John Hicks. Oxford, United Kingdom: Clarendon Press.
[83]Hoeller, Peter, Isabelle Joumard, and Isabell Koske. 2014. “Reducing Income Inequality While Boosting Economic Growth: Can It Be Done? Evidence from OECD Countries.” The Singapore Economic Review 59 (01): 1450001. https://doi.org/10.1142/S0217590814500015.
[84]Hopenhayn, Hugo. 1992. “Entry, Exit, and Firm Dynamics in Long Run Equilibrium.” Econometrica 60 (5): 1127–50.
[85]Hopenhayn, Hugo, and Richard Rogerson. 1993. “Job Turnover and Policy Evaluation: A General Equilibrium Analysis.” Journal of Political Economy 101 (5): 915–38. https://doi.org/10.1086/261909.
[86]Hsieh, Chang-Tai, and Peter J. Klenow. 2009. “Misallocation and Manufacturing TFP in China and India.” Quarterly Journal of Economics 124 (4): 1403–48. https://doi.org/10.1162/qjec.2009.124.4.1403.
[87]Hulten, Charles R. 2001. “Total Factor Productivity: A Short Biography.” In New Developments in Productivity Analysis, edited by Charles R. Hulten, Edwin R. Dean, and Michael J. Harper. https://doi.org/10.1080/09535310701571828.
[88]Hulten, Charles R. 1996. “Infrastructure Capital and Economic Growth How Well You Use It May Be More Important Than How Much You Have.” NBER Research Working Paper. https://doi.org/10.3386/w5847.
[89]International Road Federation. 2017a. “Roads, Paved (% of Total Roads).” International Road Federation. 2017.
[90]———. 2017b. “Roads, Total Network (Km).” International Road Federation. 2017.
[91]Isaksson, A. 2007. “Determinants of Total Factor Productivity: A Literature Review.” Research and Statistics Branch, UNIDO. http://www.rrojasdatabank.info/87573_determinants_of_total_factor_productivity.pdf.
[92]Jerzmanowski, Micha. 2007. “Total Factor Productivity Differences: Appropriate Technology vs. Efficiency.” European Economic Review 51 (8): 2080–2110. https://doi.org/10.1016/j.euroecorev.2006.12.005.
[105]Loayza, Norman V.; Pennings, Steven. 2018. “The Long Term Growth Model.” World Bank: Washington D.C. 2018. http://www.worldbank.org/LTGM.
[106]Loayza, Norman V., and Rei Odawara. 2010. “Infrastructure and Economic Growth in Egypt.” World Bank Policy Research Working Paper. https://doi.org/10.1177/097493060900100105.
[107]Loayza, Norman V, Pablo Fajnzylber, and César Calderón. 2005. “Economic Growth in Latin America and the Caribbean : Stylized Facts, Explanations, and Forecasts. ”Washington, DC: World Bank.
[108]Loayza, Norman V, and Luis Servén. 2010. “Business Regulation and Economic Performance.” World Bank Publications, No. 2554.
[109]Lucas, Robert E. 1988. “On the Mechanics of Economic Development.” Journal of Monetary Economics 22 (1): 3–42. https://doi.org/10.1016/0304-3932(88)90168-7.
[110]Mastromarco, Camilla, and Angelo Zago. 2012. “On Modeling the Determinants of TFP Growth.” Structural Change and Economic Dynamics 23 (4): 373-382.
[111]Mauro, P. 1995. “Corruption and Growth.” The Quarterly Journal of Economics 110 (3): 681–712. https://doi.org/10.2307/2946696.
[112]Mello, L.R. de. 1999. “Foreign Direct Investment-Led Growth: Evidence from Time Series and Panel Data.” Oxford Economic Papers 51: 133–51. https://doi.org/10.1093/oep/51.1.133.
[113]Mendi, Pedro. 2007. “Trade in Disembodied Technology and Total Factor Productivity in OECD Countries.” Research Policy 36 (1): 121–33. https://doi.org/10.1016/j.respol.2006.09.028.
[114]Melitz, Marc J. 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity." Econometrica 71 (6): 1695-1725.
[115]Miller, Stephen M., and Mukti P. Upadhyay. 2000. “The Effects of Openness, Trade Orientation, and Human Capital on Total Factor Productivity.” Journal of Development Economics 63 (2): 399–423. https://doi.org/10.1016/S0304-3878(00)00112-7.
[116]Mulaik, Stanley A. 2009. “Foundations of Factor Analysis. ”2nd edition. Boca Raton: Taylor & Francis Group, LLC.
[117]Munnell, Alicia H. 1992. “Policy Watch: Infrastructure Investment and Economic Growth.” Journal of Economic Perspectives 6 (4): 189–98. https://doi.org/10.1257/jep.6.4.189.
[118]Nadiri, M. Ishaq. 1993. “Innovations and Technological Spillovers.”. NBER Working Paper. https://doi.org/10.3386/w4423.
[119]Nicoletti, Giuseppe, and Stefano Scarpetta. 2003. “Regulation, Productivity and Growth: OECD Evidence.” Economic Policy 18 (36): 9–72. https://doi.org/10.1111/1468-0327.00102.
[120]North, Douglas C. 1990. “Institutions, Institutional Change and Economic Performance.” Cambridge University Press. https://doi.org/10.1017/CBO9780511606892.012.
[121]North, Douglass C. 1990. “Institutions, Institutional Change, and Economic Performance.” Cambridge University Press 5 (1): 1–153. https://doi.org/10.2307/2234910.
[122]OECD/IEA. 2017. “Electricity Production (KWh).” OECD/IEA. 2017.
[123]OECD. 2016a. “PISA: Mean Performance on the Mathematics Scale.” 2016.
[124]———. 2016b. “PISA: Mean Performance on the Reading Scale.” 2016.
[125]———. 2016c. “PISA: Mean Performance on the Science Scale.”
[126]Oliner, Stephen D., Daniel E. Sichel, and Kevin J. Stiroh. 2008. “Explaining a Productive Decade.” Journal of Policy Modeling 30 (4): 633–73. https://doi.org/10.1016/j.jpolmod.2008.04.007.
[127]Parente, Stephen L., and Edward C Prescott. 2000. “Barriers to Riches.” The MIT Press.
[128]Peneder, Michael. 2003. “Industrial Structure and Aggregate Growth.” Structural Change and Economic Dynamics 14 (4): 427–48. https://doi.org/10.1016/S0954-349X(02)00052-8.
[129]Petrin, Amil, and Jagadeesh Sivadasan. 2011. “Estimating Lost Output from Allocative Inefficiency, with an Application to Chile and Firing Costs.” Review of Economics and Statistics 95 (1): 286–301. https://doi.org/10.1162/REST_a_00238.
[130]Pritchett, L. 1996. “Mind Your Ps and Qs: The Cost of Public Investment Is Not the Value of Public Capital.” World Bank Policy Research Working Paper. https://doi.org/10.1596/1813-9450-1660.
[131]Przeworski, Adam, and Fernando Limongi. 1993. “Political Regimes and Economic Growth.” Journal of Economic Perspectives 7 (3): 51–69. https://doi.org/10.1257/jep.7.3.51.
[132]Rajan, Raghuram G., and Luigi Zingales. 1998. “Financial Dependence and Growth.” American Economic Review 88 (3): 559–86.
[133]Rebelo, S. 1991. “Long-Run Policy Analysis and Long-Run Growth.” Journal of Political Economy 99 (3): 500–521. https://doi.org/10.1086/261764.
[134]Restuccia, Diego, and Richard Rogerson. 2008. “Policy Distortions and Aggregate Productivity with Heterogeneous Establishments.” Review of Economic Dynamics 11 (4): 707–20. https://doi.org/10.1016/j.red.2008.05.002.
[135]Restuccia, D., and R. Rogerson. 2017. “The Causes and Costs of Misallocation.” Journal of Economic Perspectives 31(3): 151–74.
[136]Rodrik, Dani, Arvind Subramanian, and Francesco Trebbi. 2004. “Institutions Rule : The Primacy Over in Economic and Integration Geography Development.” Journal of Economic Growth 9 (2): 131–65.
[137]Romer, Paul M. 1987. “Growth Based on Increasing Returns Due to Specialization.” The American Economic Review 77 (2): 56–62. https://doi.org/10.2307/1805429.
[138]———. 1990. “Endogenous Technological Change.” Journal of Political Economy 98 (5): S71–102. https://doi.org/10.1086/261725.
[139]Sachs, Jeffrey D. 2003. “Institutions Dont Rule: Direct Effects of Geography on per Capita Income.” 9490. NBER Working Paper.
[140]SAS Institute Inc. 2017. “Principal Components or Factor Analysis?” 2017. https://community.jmp.com/t5/JMP-Blog/Principal-components-or-factor-analysis/bc-p/50703#M3325, accessed on 15 March 2018.
[141]Schumpeter, Joseph. 1942. “Capitalism, Socialism and Democracy. ”New York: Harper & Row.
[142]Solow, R. M. 1956. “A Contribution to the Theory of Economic Growth.” The Quarterly Journal of Economics 70 (1): 65–94. https://doi.org/10.2307/1884513.
[143]Straub, Stéphane. 2008. “Infrastructure and Growth in Developing Countries : Recent Advances and Research Challenges.” World Bank Policy Research Working Paper. https://doi.org/10.1596/1813-9450-4460.
[144]Svirydzenka, Katsiaryna. 2016. “Introducing a New Broad-Based Index of Financial Development.” 16/5. IMF Working Paper.
[145]Swan, T. 1956. “Economic Growth and Capital Accumulation.” Economic Record 32 (2): 334–61. https://doi.org/10.1111/j.1475-4932.1956.tb00434.x.
[146]Syverson, Chad. 2011. “What Determines Productivity?” Journal of Economic Literature 49 (2): 326–65. https://doi.org/10.1257/jel.49.2.326.
[147]Ulku, Hulya, and Arvind Subramanian. 2004. “R&D, Innovation, and Economic Growth: An Empirical Analysis.” IMF Working Paper. https://doi.org/10.5089/9781451859447.001.
[148]Wei, Zheng, and Rui Hao. 2011. “The Role of Human Capital in Chinas Total Factor Productivity Growth: A Cross-Province Analysis.” The Developing Economies 49 (1): 1–35. https://doi.org/10.1111/j.1746-1049.2010.00120.x.
[149]WHO/UNICEF. 2017a. “Improved Sanitation Facilities (% of Population with Access).” 2017.
[150]———. 2017b. “Improved Water Source (% of Population with Access).” 2017.
[151]Woo, Wing Thye, Stephen Parker, and Jeffrey Sachs. 1997. “Economies in Transition: Comparing Asia and Europe.” The MIT Press.
[152]World Bank. 2003. “World Development Report 2004 : Making Services Work for Poor People.”World Bank. https://openknowledge.worldbank.org/handle/10986/5986.
[153]World Bank. 2017a.“Doing Business 2017: Equal Opportunity for All. ”Washington, DC: World Bank Group. https://doi.org/10.1596/978-1-4648-0948-4.
[154]———. 2017b. “Employment to Population Ratio, 15+, Total (%) (Modeled ILO Estimate).” World Development Indicators. 2017.
[155]———. 2017c. “Fixed Telephone Subscriptions (per 100 People).” World Development Indicators. 2017.
[156]———. 2017d. “GDP (Constant 2010 US$).” World Development Indicators. 2017.
[157]———. 2017e. “GDP per Capita (Constant 2010 US$).” World Development Indicators. 2017.
[158]———. 2017f. “Government Expenditure on Education, Total.” World Development Indicators. 2017.
[159]———. 2017g. “Gross Capital Formation (Constant 2010 US$).” World Development Indicators. 2017.
[160]———. 2017h. “Labor Market Regulation Indicators.” Doing Business Database. 2017.
[161]———. 2017i. “Mobile Cellular Subscriptions (per 100 People).” World Development Indicators. 2017.
[162]———. 2017j. “Oil Rents (% of GDP).” World Development Indicators. 2017.
[163]———. 2017k. “Patent Applications, Nonresidents.” World Development Indicators. 2017.
[164]———. 2017l. “Patent Applications, Residents.” World Development Indicators. 2017.
[165]———. 2017m. “Population, Total.” World Development Indicators. 2017.
[166]———. 2017n. “Population Ages 0-14 (% of Total).” World Development Indicators. 2017.
[167]———. 2017o. “Research and Development Expenditure (% of GDP).” World Development Indicators. 2017.
[168]———. 2017p. “Scientific and Technical Journal Articles.” World Development Indicators. 2017.
[169]———. 2017q. “Share of Women in Wage Employment in the Nonagricultural Sector (% of Total Nonagricultural Employment).” World Development Indicators. 2017.
[170]———. 2017r. “World Development Report 2017: Governance and the Law. ”World Bank. http://www.worldbank.org/en/publication/wdr2017.
[171]Young, Alwyn. 2017. “Consistency without Inference: Instrumental Variables in Practical Application.” London School of Economics Working Paper. http://personal.lse.ac.uk/YoungA/ConsistencyWithoutInference.pdf.
(責任编辑:吴思)
Abstract: This is the background paper for the productivity extension of the World Banks Long-Term Growth Model (LTGM). Based on an extensive literature review, the paper identifies the main determinants of economic productivity as innovation, education, market efficiency, infrastructure, and institutions. Based on underlying proxies, the paper constructs indexes representing each of the main categories of productivity determinants and, combining them through principal component analysis, obtains an overall determinant index.This is done for every year in the three decades spanning 1985–2015 and for more than 100 countries. In parallel, the paper presents a measure of total factor productivity (TFP), largely obtained from the Penn World Table, and assesses the pattern of productivity growth across regions and income groups over the same sample. The paper then examines the relationship between the measures of TFP and its determinants. The variance of productivity growth is decomposed into the share explained by each of its main determinants, and the relationship between productivity growth and the overall determinant index is identified. The variance decomposition results show that the highest contributor among the determinants to the variance in TFP growth is market efficiency for Organisation for Economic Co-operation and Development countries and education for developing countries in the most recent decade. The regression results indicate that, controlling for country- and time-specific effects, TFP growth has a positive and significant relationship with the proposed TFP determinant index and a negative relationship with initial TFP. This relationship is then used to provide a set of simulations on the potential path of TFP growth if certain improvements on TFP determinants are achieved. The paper presents and discusses some of these simulations for groups of countries by geographic region and income level. In addition, as a country-specific illustration, the paper presents simulations on the potential path of TFP growth for China under various scenarios.
Keywords: Productivity;Innovation;Education; Efficiency; Infrastructure; Institutions; Growth